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ABSTRACT 

 

Pneumonia remains a leading cause of morbidity and mortality in children under five, particularly 

in low- and middle-income countries (LMICs), where limited healthcare access and diagnostic 

challenges exacerbate the disease burden. Despite being preventable and treatable, pediatric 

pneumonia accounts for approximately 14% of under-five deaths globally, highlighting the urgent 

need for accurate and scalable diagnostic solutions. Deep learning, particularly convolutional 

neural networks (CNNs), has emerged as a promising tool for automated pneumonia classification 

in chest radiographs, offering potential improvements over traditional clinical and radiological 

assessments. This study explores the optimization of CNN architectures for pediatric pneumonia 

classification, focusing on three key aspects: (1) the impact of advanced activation functions 

(Swish, Mish) compared to traditional ReLU; (2) the integration of multi-scale and strided 

convolutions to enhance feature representation; and (3) the application of Gradient-weighted Class 

Activation Mapping (Grad-CAM) to improve model interpretability. Through these approaches, 

the dissertation contributes to the improvement of CNN architectures adapted for medical image 

analysis using Swish and Mish activation functions, aiming to reduce information loss during 

training. Experimental results demonstrate that Mish-activated CNNs achieve superior 

classification accuracy (up to 97.61%) by preserving gradient flow and reducing information loss 

during training. Additionally, the integration of multi-scale and atrous convolutions increases the 

adaptability and performance of CNN architectures, enabling more robust recognition of 

pneumonia across diverse pediatric chest X-ray datasets. Architectural enhancements, including 

multi-scale convolutions in models like DenseNet201 and InceptionResNetV2, further improve 

robustness across diverse pediatric chest X-ray datasets. Additionally, Grad-CAM visualizations 

align model decisions with clinically relevant regions, fostering trust in AI-assisted diagnostics. 

This contributes to improving diagnostic reliability and enabling more precise determination of 

important areas in medical images by visualizing activation maps. Despite these advancements, 

challenges persist, including dataset limitations, model generalizability, and computational 

demands in low-resource settings. Future research should focus on multi-institutional data 

collaboration, domain adaptation techniques, and lightweight model deployment to bridge the gap 

between AI innovation and clinical implementation. 

Keywords: convolutional neural networks; deep learning; feature extraction; medical image 

analysis; Mish activation function; pediatric pneumonia; transfer learning 
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SAŽETAK 

 

Pneumonija je i dalje vodeći uzrok morbiditeta i mortaliteta u djece mlađe od pet godina, posebno 

u zemljama s niskim i srednjim prihodima, gdje ograničen pristup zdravstvenoj zaštiti i 

dijagnostički izazovi doprinose učestalosti bolesti. Iako se može spriječiti i liječiti, pedijatrijska 

pneumonija čini oko 14% smrtnih slučajeva u djece mlađe od pet godina, što naglašava hitnu 

potrebu za preciznim i skalabilnim dijagnostičkim rješenjima. Metode dubokog učenja, posebno 

konvolucijske neuronske mreže pokazale su obećavajuće rezultate u automatskoj klasifikciji 

pneumonije na rendgenskim snimkama prsnog koša, nudeći potencijalnu nadmoć nad dosadašnjim 

kliničkim i radiološkim metodama. Ova studija istražuje optimizaciju arhitektura konvolucijskih 

neuronskih mreža za klasifikaciju pedijatrijske pneumonije, s naglaskom na tri ključna aspekta: 

(1) utjecaj naprednih aktivacijskih funkcija (Swish, Mish) u usporedbi s tradicionalnom ReLU 

funkcijom; (2) integraciju višeskalnih i konvolucija s povećanim pomakom za poboljšanje 

reprezentacije značajki; te (3) primjenu metode Gradient-weighted Class Activation Mapping 

(Grad-CAM) za povećanje interpretabilnosti modela. Eksperimentalni rezultati pokazuju da 

modeli konvolucijskih neuronskih mreža s Mish aktivacijskom funkcijom postižu veću točnost 

klasifikacije (do 97.61%) zahvaljujući boljem protoku gradijenta i smanjenom gubitku informacija 

tijekom treniranja. Ovim je ostvaren prvi doprinos disertacije, unaprjeđenje CNN arhitektura 

prilagođenih medicinskoj analizi slika uporabom naprednih aktivacijskih funkcija, s ciljem 

smanjenja degradacije informacija u procesu učenja. Arhitektonske nadogradnje, uključujući 

višerazinske konvolucije u modelima poput DenseNet201 i InceptionResNetV2, dodatno 

povećavaju robusnost na različitim skupovima pedijatrijskih rendgenskih snimki. Na taj se način 

ostvaruje drugi doprinos, povećana prilagodljivost i performanse CNN arhitektura temeljenih na 

višeskalnim i atrous konvolucijama, što omogućuje prepoznavanje raznolikih patoloških obrazaca 

u dječjim plućima. Nadalje, Grad-CAM vizualizacije usklađuju odluke modela s klinički 

relevantnim regijama, potičući povjerenje u AI-pomoćnu dijagnostiku. Time se ostvaruje treći 

doprinos disertacije, poboljšanje pouzdanosti dijagnostike i preciznije određivanje važnih područja 

u medicinskim slikama kroz vizualizaciju aktivacijskih mapa, čime se osnažuje klinička 

primjenjivost sustava. Unatoč napretku, ostaju izazovi poput ograničenosti dostupnih podataka, 

generalizacije modela i računalnih zahtjeva u resursno ograničenim okruženjima. Buduća 

istraživanja trebala bi se usredotočiti na međuinstitucionalnu suradnju u prikupljanju podataka, 

tehnike prilagodbe domena i implementaciju pojednostavljenih modela kako bi se omogućila šira 

klinička primjena. 

Ključne riječi: konvolucijske neuronske mreže; duboko učenje; ekstrakcija značajki; analiza 

medicinskih slika; Mish aktivacijska funkcija; pedijatrijska pneumonija; prijenosno učenje; 

  



8 

 

1. INTRODUCTION 

 

1.1. Global burden of pediatric pneumonia 

Pneumonia remains one of the most pressing global public health challenges, particularly among 

children under five years of age [1], [2], [3]. It is a form of acute lower respiratory tract infection 

that causes inflammation of the alveoli, leading to the accumulation of fluid or pus in the lungs, 

impaired oxygen exchange, and, if untreated, potentially fatal respiratory failure [4]. Despite being 

both preventable and treatable, pediatric pneumonia continues to cause significant morbidity and 

mortality worldwide, disproportionately affecting children in LMICs [5], [6]. Globally, pneumonia 

affects an estimated 150 million children each year, with the highest prevalence in LMICs [7]. 

With an annual incidence of 1 in 71 children, South Asia, West Africa, and Central Africa are 

disproportionately affected. This is due to systemic factors like low vaccination rates, exposure to 

indoor air pollution, malnutrition, and limited healthcare access [8], [9]. Due to underlying causes 

in these regions, the prevalence of pediatric pneumonia is high and regularly severe [6]. Within the 

pediatric population, particularly in those under five years of age, pneumonia is the leading cause 

of respiratory-related hospital admissions and a significant contributor to overall mortality [10]. 

As the leading cause of respiratory-related hospitalizations and a primary contributor to under-five 

mortality, pneumonia accounts for 14% of deaths in this age group, claiming 

approximately 740,000 young lives annually [11]. Some estimates suggest an even higher toll, 

ranging between 700,000 and 1 million deaths per year [12], , surpassing the combined mortality 

of HIV/AIDS, malaria, and measles [13]. While high-income countries report significantly lower 

mortality rates due to advanced healthcare systems, antibiotic availability, and robust vaccination 

programs (e.g., against Streptococcus pneumoniae and Hib) [8], LMICs struggle with delayed 

diagnoses and inadequate treatment [14], [15]. Barriers such as poor infrastructure, shortages of 

trained medical staff, and unreliable diagnostic tools exacerbate outcomes in these regions [6]. It 

is paramount that this situation should be attended to in its early stages before it develops to more 

serious conditions such as pleural effusion, sepsis, and respiratory failure since these complications 

put a child at high risk of death [16]. Moreover, the unrecognised or incorrectly categorised cases 

may accelerate the transmission in the community and cause the misuse of antibiotics, contributing 

to antimicrobial resistance [17], [18].  
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1.2. Challenges in diagnosis and current diagnostic approaches 

Clinical manifestations (e.g., tachypnea, chest indrawing, hypoxia) are frequently resorted to in 

the area with limited resources to prove the diagnosis, yet these signs are not specific and may be 

similar to other respiratory infections [19]. This points to the relevance of the new and improved 

diagnostic instruments that may be readily accessible and available to caregivers in order to handle 

children outcomes and health disparity in the world.  

The challenge of an adequate diagnosis of the pneumonia is aggravated with a very wide spectrum 

of the potential causative agents which vary significantly and depend on the age and 

immunological history of the child and underlying inoculation status [20]. Whereas, early signs 

and symptoms, which are stores of pre-diagnostic evidence, viral diseases i.e. respiratory syncytial 

virus (RSV), parainfluenza, adenovirus, and influenza are the most frequent cause in children less 

than five [21], [22]. Although bacterial pneumonia is decreasing through conjugate vaccines, 

Streptococcus pneumoniae and Mycoplasma pneumoniae continue to take place prominently as 

the most common bacterial pathogens in vaccinated older children and non-neonates [19]. 

Pediatric pneumonia disease pathogenesis has been seen to take a cascade of events commencing 

with microbial invasion, after which there have been inflammatory responses as well as 

immigration of immune cells in alveoli. The result is the exudation of fluids, decreased oxygen 

exchange and finally, in more advanced stages, an epithelial necrosis of tissues. Clinical 

manifestations of these pathophysiological changes manifest themselves in the form of the 

symptoms of fever, cough, accelerated breathing, chest pain, and other signs, such as exhaustion 

and feeding and eating problems in some instances and gastrointestinal symptoms. These 

presentations are so general that considerable amount of time has to be devoted to clinical 

assessment that is inadequate to make a concrete diagnosis [23]. This is what made imaging 

modalities very valuable in the adequate determination and evaluation of the level of lung 

involvement. Chest radiography remains the gold standard for pneumonia diagnosis, providing 

visual confirmation of characteristic features such as alveolar consolidation, interstitial infiltrates, 

and pleural effusion [18]. The results give critical pointers to health practitioners in enabling them 

to determine the degree of the disease and develop relevant treatment protocols. Radiographs are 

also useful in distinguishing between typical bacterial pneumonia with lobar consolidators, and 

viral or atypical pneumonias, which may have more diffuse, interstitial patterns in cases of children 

[24]. Despite its diagnostic value, radiography has limitations. In early or mild infections, 
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radiographic changes may be subtle or entirely absent. In children with underlying chronic 

conditions or immune compromise, radiological signs may be atypical [24], [25]. Furthermore, 

interpretation of pediatric chest X-rays is inherently more challenging due to anatomical and 

developmental variations in the lungs and thoracic structures, which can influence diagnostic 

accuracy [26]. Alternative diagnostic approaches such as lung ultrasonography have gained 

prominence, particularly in resource-constrained settings. Lung ultrasound offers several 

advantages: it is portable, non-ionizing, and relatively inexpensive, with growing evidence 

supporting its accuracy in detecting consolidations and pleural effusions. However, its utility 

depends heavily on the operator’s skill and experience, limiting widespread applicability in low-

resource or non-specialist settings [27], [28]. Laboratory investigations also play a supporting role 

in pneumonia diagnosis. Biomarkers such as C-reactive protein and procalcitonin provide indirect 

evidence of infection and may aid in distinguishing bacterial from viral causes, although they lack 

sufficient specificity and sensitivity when used alone. Molecular assays for pathogen detection are 

available in some high-resource settings but remain inaccessible in many regions where the disease 

burden is greatest [29], [30]. These diagnostic limitations underscore the critical demand for 

innovative solutions that combine high accuracy with scalability and adaptability across varied 

healthcare settings.  

1.3. Deep learning in medical imaging for pneumonia diagnosis 

Deep learning has recently surfaced as a revolutionary approach in medical imaging analysis, 

demonstrating remarkable potential for faster and more standardized pneumonia classification 

[31]. The CNN deep learning systems do not require radiologist evaluation like traditional 

pathways and are able to analyze chest radiographs independently, which allows them to identify 

minute imaging patterns that can be overlooked in the visual analysis process. This inbuilt ability 

to learn multi-level feature representations using the pixel data makes CNNs highly appropriate in 

the analysis of medical images [32], [33]. When trained on large amounts of data, CNN models 

have shown potential to achieve human expert level diagnostic accuracy and in some cases surpass 

it, making them a potential alternative to resource-poor settings or a setting without access to 

specialist radiologists. The technology is particularly relevant in the context of children, as timely 

diagnoses can prevent rapid furthering of the disease [34]. Automated diagnostic platforms have 

other benefits as they reduce the discrepancy in diagnosis between different clinics as well as 

promote reproducibility of diagnosis at different healthcare institutions. Moreover, they also make 
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it possible to quickly scan the images studies thus triaging urgent cases that require urgent care. 

However, there are technical challenges involved in clinical adoption of deep learning solutions 

[35]. X-rays of the chest of children have unique features that contrast with those of adults: not 

only the size of the thoracic region and the ratio of thoracic sizes and ratios, but also the presence 

of markers of development, conditions that may complicate the generalizability of the model [20]. 

These issues are further compounded by the lack of available pediatric imaging data, which are 

often limited in sample size and contends with unbalanced class distribution and variability of 

labeling, in the effort needed for training and validation. Critically, model learning behavior is 

shaped by the choice of CNN architectural elements and most importantly the activation functions 

[36]. Though ReLU has not become any less popular, some new replacements, including Swish 

and Mish, have been shown to be more smoothly optimized and faster to use in more difficult 

classification problems [37]. However, they are yet to accumulate enough research on the 

usefulness in the classification of pediatric pneumonia, which is an enormous opportunity in this 

respect, methodologically. Interpretability is another important part of implementing medical AI. 

It is not necessary not only to have clinical acceptance followed by the algorithmic accuracy, but 

it is possible to have whether one can explain a decision-making process [38], [39]. By the 

principle of the visualization of image processing, users can understand the way a model operates 

with the help of such methods as Grad-CAM by visualizing the areas of the image that are 

considered to be the most significant to the diagnosis  [40]. The refinement of these means of 

explanation is also necessary since, in this particular way, potential predictions may be valid and 

applicable in clinical practice. The classification of pneumonia in children introduces even more 

troubles: the morphological alterations of the lungs at various age levels precondition the alteration 

of pathological image and age-specific immune response as well as high comorbidity rates (e.g., 

asthma, congenital defects) is characterized by the overlapping of radiographic patterns that are 

difficult to identify [41]. It implies that it will be possible to identify such subtle imaging signatures 

of CNNs solely through sophisticated architectures that are trained on high-quality datasets [42]. 

The recent progress in deep learning in the diagnosis of pneumonia reveals that CNNs achieve 

superior classification accuracy, particularly when transfer learning and other architecture-related 

ideas are employed. Though several studies confirm the CNN effective results in the study on 

analysis of chest radiographs, they also identify the complexities of the clinical variations problem. 

Kahwachi and Saed [43] identified InceptionV3 and DenseNet121 as top performers, particularly 
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when integrated with alternative activation functions. This study underscored the critical role of 

activation function selection in maximizing CNN efficacy for medical image analysis. Parallel 

research by Walia et al. [44] implemented a DW-CNN framework incorporating the Swish 

activation function with VGG-16 transfer learning, achieving 98.5% training accuracy but 

demonstrating reduced test set performance (79.8%), revealing significant generalization 

challenges. Reis and Turk [45] introduced COVID-DSNet, a model that achieved 100% accuracy 

in binary classification tasks for COVID-19 detection. While demonstrating exceptional 

performance in a controlled setting, the generalizability of such highly accurate models to diverse 

clinical environments and varied imaging protocols remains a critical area of investigation. Sriporn 

et al. [46] demonstrated that integrating the Mish activation function and the Nadam optimization 

algorithm into a DenseNet-121 architecture yielded a 98.97% accuracy in identifying pulmonary 

lesions. This observation highlights the necessity of advanced activation functions, which can 

reduce information degradation and speed convergence of the models, such as Mish. Wang et al. 

[47] added Squeeze-and-Excitation (SE) blocks and Parametric ReLU (PReLU) activation to 

DenseNet. Their optimized model realised F1-score of 94.3%, which shows effectiveness of multi-

scale convolution approaches in identifying delicate pathological differentiations against normal 

anatomical characteristics shown on radiographic images. The reasoned application of the dilated 

convolutions in their work was also associated with a better performance of the features extraction 

with a minimum loss of information which, is specifically valuable in case the analysis of high-

resolution medical images is performed because the differences in the structure details can be vast. 

Transfer learning has been especially helpful when it comes to medical diagnostic, at least 

according to the results made by Luján-García et al. [48]. They have effectively used this with 

Xception network to classify pediatrics pneumonia obtaining a high value of AUC 97.0%. A good 

feature of their work was incorporation of the Grad-CAM approach that would enable them to 

visualize particular part of the radiographs that played the biggest role towards influencing the 

decisions made by the model. It did not only offer useful clinical information but also made the AI 

system a lot more transparent, thereby augmenting confidence in the diagnostics work of the AI 

system. The study by  Khan et al. [49] employed any of three pre-trained models known as 

EfficientNetB1, NasNetMobile, and MobileNetV2 with multiple forms of classification of chest 

X-rays. EfficientNetB1, especially utilizing the Swish activation parameter successfully surpassed 

the rest due to its ability to identify accurate results by classifying COVID-19 and viral pneumonia, 
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the COVID-19 or lung opacity, and a normal case up to 96.13%. This paper highlights the 

importance of activation functions selection and careful tuning of the model so as to improve 

classification performance. Even the activation function selection is a delicate process, as 

highlighted by Mohammed et al. [50], there is no way to find the single-best variant. The best 

activation function is to a great extent on the given task and the structure of the neural network. 

Among the most popular are ReLU, Leaky ReLU, Swish, and Mish, but even newer directions, 

such as SReLU, CELU, or ISRLU, also were noted by the authors in relation to the enhanced 

convergence properties and predictive performance of these activations in some complex domains 

of medical imaging. Addressing the challenge of limited labeled data, especially prevalent during 

the COVID-19 pandemic, Fahim et al. [51] implemented a semi-supervised learning approach 

using EfficientNet and Noisy Student Training. Their model, which incorporated the Mish 

activation function alongside batch normalization and dropout regularization, achieved a 98% 

AUC for classifying COVID-19, pneumonia, and normal cases from chest X-rays. This innovative 

work demonstrates the potential of combining modern activation techniques with semi-supervised 

strategies in data-scarce environments.  Ha Pham and Tran [42] explored the benefits of ensemble 

modeling by combining the outputs of three powerful CNN architectures: InceptionResNetV2, 

DenseNet201, and VGG16. They created a model based on the ensemble of their existing model, 

which they trained on 5,848 pediatric chest X-ray images and which obtained an accuracy of above 

95% and an F1-score improvement of 3 compared to single models. Such results can be used as 

very good evidence of the importance of ensemble methods when aiming to improve the reliability 

of classification, at the expense of greater computational intricacy.  Jain et al. [52] comparatively 

analyzed their custom CNN models to different pre-trained models such as VGG16, VGG19, 

ResNet50, and InceptionV3 when it came to the implementation of detecting pediatric pneumonia. 

Their custom models recorded good results with a validation accuracy of 92.3%. Conversely, the 

pre-trained models had more diverse outcomes with the highest accurateness of 88.4 and the lowest 

of 70.9. The authors indicate they find that in carefully designed and optimized variants that are 

customized to a specific medical imaging problem, weight-efficient custom CNNs can match, and 

in special cases even exceed, large pre-trained models. With additional causes to write about 

transfer learning,  Kaya [53] investigated the use of transfer learning with DenseNet121 applied to 

early detection of pediatric pneumonia. Their fine-tuned model was able to show a significant 

classification accuracy of 95.03% and F1-score of 96.03% on a publicly available dataset. This 
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demonstrates how the model can make fast and reliable diagnoses in clinical settings, citing that 

this is a result of the synergy between deep learning, and transfer learning in high stakes health 

care tasks.  Panwar et al. [40] have addressed the issue of combining transfer learning with 

interpretability characteristics by creating their COVID-19 diagnosing deep learning model using 

X-ray and CT images. Their model attained a high detection rate of 96.55% with the application 

of Grad-CAM to provide visual explanations and the breaking up of the overfitting problem by 

introducing early stopping. By combining the effectiveness of expert performance in diagnosis 

with a capacity to visually interpret the outputs of the model, this method allowed developing a 

model that increased trust and allowed clinicians to perform the necessary checks on the AI-

derived results. 

1.4. Research gap and motivation 

Although much progress has been achieved it remains that there are still several barriers to bridging 

the implementation gap between deep learning diagnosis systems developed in research and 

clinical practice: 

1. Limits on the amount of data: CNN requires large, high-quality datasets to train, whereas 

the imaging of the pediatric pneumonia has specific data collection issues. Ethics, data-

sharing policies of the institutions, and inconsistent imaging protocols across care 

organizations limit the availability of data significantly.  

2. Generalizing issues: A lot of models perform very well on certain datasets, and they do not 

do well when these trained models are used on other images that were obtained under 

varying settings. Such restricted generalizability makes them not very useful in clinical 

applications especially in different clinical practice environments with different standards 

of imaging or patients.  

3. Explainability gap: Deep learning models have black boxed decision-making procedures 

that generate uncertainty in the minds of clinicians. A prominent feature of developing 

intuitive explanation approaches such as Grad-CAM is their necessity to clinical adoption 

and genuine human-AI collaboration. 
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4. Resource intensity: The substantial computational requirements for training and deploying 

high-performance CNNs pose significant implementation barriers in resource-limited 

regions where pneumonia burden is highest. 

This study proposes a multifaceted solution to these challenges through novel architectural 

optimizations. The approach focuses on three key innovations: (1) integration of advanced 

activation functions (Swish/Mish) to preserve feature information, (2) implementation of multi-

scale convolutional strategies for enhanced adaptability, and (3) incorporation of interpretability 

tools to bridge the AI-clinician communication gap. The resulting framework aims to deliver 

accurate, generalizable, and clinically transparent diagnostic models. 

1.5. Research hypotheses 

This dissertation makes the following research hypotheses: 

H1: CNN architectures employing Swish/Mish activation functions will demonstrate superior 

classification accuracy compared to ReLU-based models by mitigating gradient information loss 

during backpropagation. 

H2: Multi-scale convolutional architectures will exhibit improved robustness across 

heterogeneous pediatric chest X-ray datasets by capturing pathological features at varying 

receptive fields. 

H3: Grad-CAM-enhanced visualization will significantly improve model interpretability, as 

measured by clinician confidence in AI-generated diagnoses during validation studies. 

After formulating these research hypotheses, it is essential to highlight the original scientific 

contributions of this dissertation. These contributions are directly derived from the identified 

research gaps and are designed to advance both methodological innovation in deep learning and 

its clinical applicability in pediatric pneumonia diagnosis. 

1.6. Original scientific contributions 

This dissertation makes the following original scientific contributions: 

1. Improvement of convolutional neural network architectures adapted for medical image 

analysis using Swish and Mish activation functions with the aim of reducing information 

loss during training. 
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2. Increasing the adaptability and performance of convolutional neural network architectures 

based on multi-scale convolutions and atrous convolutions. 

3. Proposal for improving diagnostic reliability and more precise determination of important 

areas in medical images by visualizing activation maps using the Grad-CAM method. 

Ova disertacija donosi sljedeće izvorne znanstvene doprinose: 

1. Unaprjeđenje arhitektura konvolucijskih neuronskih mreža prilagođenih za analizu 

medicinskih slika aktivacijskim funkcijama Swish i Mish s ciljem smanjenja gubitka 

informacija tijekom treniranja. 

2. Povećanje prilagodljivosti i performansi arhitektura konvolucijskih neuronskih mreža 

zasnovan na višeskalnim konvolucijama i konvolucijama s povećanim pomakom. 

3. Prijedlog poboljšanja dijagnostičke pouzdanosti i preciznijeg određivanja bitnih područja 

u medicinskim slikama vizualizacijom aktivacijskih mapa pomoću metode Grad-CAM. 

1.7. Contributions papers 

The contributions of this dissertation are summarized through three peer-reviewed publications, 

each addressing a specific dimension of architectural optimization, methodological innovation, 

and interpretability in deep learning for pediatric pneumonia diagnosis: 

CP1: Optimizing Convolutional Neural Network Architectures with Optimal Activation 

Functions for Pediatric Pneumonia Diagnosis Using Chest X-Rays 

CP2: Pediatric Pneumonia Recognition Using an Improved DenseNet201 Model with Multi-

Scale Convolutions and Mish Activation Function 

CP3: Interpretable Deep Learning for Pediatric Pneumonia Diagnosis Through Multi-Phase 

Feature Learning and Activation Patterns 
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2.  DISCUSSION 

 

2.1. Methodological framework and contributions 

The methodological design of this dissertation was guided by the overarching goal of evaluating 

and advancing deep learning methods for the automated diagnosis of pediatric pneumonia using 

chest radiographs. Instead of presenting methods in isolation from results, the framework 

integrates experimental decisions with critical reflection on their contributions to medical imaging 

and clinical artificial intelligence. 

2.1.1. Dataset curation and preprocessing 

Quality and representativeness of dataset is the basis of the development of any deep learning-

based medical imaging research. In this dissertation, Chest X-ray Images (Pneumonia) repository 

was utilized [54], including 4273 cases of pneumonia and 1583 controls (healthy people), which 

consisted of 5856 radiographs. In order to be compared, and to reduce the biases introduced by the 

disparate acquisition conditions, the images were rescaled to a consistent resolution, usable in 

convolutional neural network architectures. In further supporting generalizability, stratified 

random split was used. Training was done on the 80% of the dataset, and 20 percent was used as 

a validation set, but the proportions of classes in both subsets remained the same. This balance 

reduced the risk of inflated performance estimates and ensured that evaluation reflected the ability 

of models to handle unseen cases. Table 2.1 summarizes the resulting distribution. 

Table 2.1. Distribution of the dataset. 

Category Total Images Training Images Validation Images 

Pneumonia 4273 3418 855 

Healthy 1583 1266 317 

Total 5856 4684 1172 
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2.1.2. Data augmentation and robustness 

A central methodological contribution of this dissertation is the systematic use of data 

augmentation to enhance robustness. Pediatric radiographs exhibit considerable variability due to 

patient positioning, movement, and differences in equipment calibration. Without augmentation, 

deep learning models risk overfitting to training-specific artifacts. To counter this, clinically 

plausible transformations such as horizontal flipping, random rotation, translation (shift), and 

zooming were applied. Crucially, augmentation was implemented during training, so that each 

epoch presented the network with a dynamically varied dataset [55]. This strategy not only 

improved generalizability but also provided a controlled way to study how augmentation interacts 

with architectural and activation function choices. 

2.1.3. Model construction and transfer learning 

Alongside robust data handling, this dissertation incorporated a comparative exploration of CNN 

architectures to understand how design choices affect performance. Four models were selected: 

InceptionV3, DenseNet201, InceptionResNetV2, and MobileNetV2. These architectures capture 

different philosophies of feature extraction: 

• Inception networks emphasize multi-scale representation, 

• DenseNet promotes feature reuse through dense connectivity, 

• ResNet variants highlight the value of residual learning for deep optimization, 

• MobileNetV2 prioritizes efficiency, making it suitable for low-resource deployment. 

To maximize learning efficiency, all models were initialized with ImageNet weights and 

subsequently fine-tuned on the pediatric pneumonia dataset. This transfer learning strategy 

accelerated convergence and improved performance, compensating for the moderate dataset size 

relative to typical deep learning benchmarks. 

2.1.4. Research methodology 

Taken together, the research methodology can be conceptualized in three sequential steps: 

1. Data curation, preprocessing and augmentation 

2. Model construction, transfer learning, and optimization 
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3. Performance evaluation, metric analysis, and model validation 

This structured pipeline is depicted in Figure 2.1, which illustrates the flow from dataset 

preparation through augmentation, model training, and validation. 

 

Figure 2.1. Overall workflow of data curation, preprocessing, model construction, and validation. 

2.1.5. Validation strategies 

The other cornerstone of the methodology is validation robustness. Although simple train-

validation splits are widely used in the literature, they are likely to overfit performance and obscure 

generalizability [48], [56], [57]. To overcome this, stratified validation was always used and the 

distribution of classes in subsets was always balanced. Besides that, cross-validation experiments 

using k-fold repeated applying to the data similar to those that are designed to check consistency 

offered additional evidence. 

Performance appraisal was not related to correctness anymore. The entire complex of measures, 

which comprised precision, recall, F1-score and specificity, was used. The multidimensional view 

provided a more clinically based evaluation, with error rates in which the missed cases of 
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pneumonia (false negative) being identified having larger risks as opposed to incorrect positive 

cases (false positives). 

2.1.6. Methodological contributions 

The contribution to methodology made by this dissertation can be summed up in three axes: 

• Dataset-centric contributions: rigorous preprocessing, balanced stratification, and 

clinically informed augmentation. 

• Model-centric contributions: systematic integration of diverse CNN architectures with 

transfer learning, enabling comparative evaluation. 

• Evaluation-centric contributions: adoption of multidimensional metrics and robust 

validation strategies, moving beyond simplistic accuracy reporting. 

These methodological decisions go beyond technical implementation to facilitate the larger 

research and clinical objectives. From a computational perspective, the study demonstrates that 

targeted design decisions, such as augmentation, activation functions, and architectural modules, 

can have a greater impact than raw model size. This lesson can be applied to other fields of medical 

imaging where data sets are low and heterogeneity is high. Clinically, the methodology reflects the 

realities of deployment: limited access to radiologists in resource-constrained regions, variability 

in imaging conditions, and the need for efficient yet reliable artificial intelligence (AI) tools. By 

ensuring that models are both robust and interpretable, this work contributes methodological 

innovations that speak directly to deployment feasibility. 

2.2. Validation strategies and experimental robustness 

The validation aspect is a key factor that can be used in making sure that deep learning models of 

medical imaging are not only performative on training data, but also that they can be used to make 

predictions on unseen clinical cases. The selection of validation strategies in the context of 

pediatric pneumonia classification, where diagnostic reliability directly translates into patient care, 

is not a technical issue of merely technical nature but has clinical, ethical, and translational aspects. 

This section will describe the methodology of the rationale of the validation framework adopted, 

will elaborate on the description of the evaluation metrics, and will also discuss how the robustness 

was tested under various experimental conditions. 
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The task of model validation in medical imaging differs significantly from that in conventional 

computer vision. Unlike datasets consisting of natural images, radiological datasets often exhibit 

limited size, class imbalance, and subtle inter-class variability. In addition, the cost of 

misclassification is asymmetric: failing to classify pneumonia (a false negative) can have far more 

severe consequences than a false positive, which may only lead to additional but non-invasive 

follow-up testing. 

To address these challenges, this dissertation adopted a validation philosophy grounded in three 

principles: 

• Stratification and balance to ensure equal class representation across training and validation 

subsets. 

• Metric diversity to capture multiple aspects of model performance beyond overall 

accuracy. 

• Robustness testing to evaluate how model performance withstands variation in data, 

architecture, and optimization procedures. 

2.2.1. Stratified validation split 

A stratified 80–20 split was implemented, whereby 80% of the dataset was used for training and 

20% reserved for validation. Stratification preserved the proportion of pneumonia and healthy 

cases in each subset, thus avoiding bias in class distribution. This is particularly critical in medical 

imaging, where disease prevalence is often lower than in general populations and unbalanced splits 

may lead to misleadingly optimistic performance. While single splits are common, the stratified 

approach ensured that the model was consistently exposed to a representative sample of both 

classes during training and evaluation. For exploratory purposes, limited experiments with k-fold 

cross-validation (k = 5) were also conducted. These provided further evidence that the reported 

results were not artifacts of a particular random partition but reflected consistent model behavior 

across folds. 

2.2.2. Evaluation metrics 

To provide a holistic assessment of performance, five complementary metrics were employed: 

precision, recall, specificity, F1-score, and accuracy. Each metric captures a distinct dimension of 
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diagnostic utility, and together they provide a clinically meaningful interpretation of model 

reliability. 

The following notation is used: 

• TP (True Positives): correctly identified pneumonia cases. 

• TN (True Negatives): correctly identified healthy cases. 

• FP (False Positives): healthy cases misclassified as pneumonia. 

• FN (False Negatives): pneumonia cases misclassified as healthy. 

Precision measures the proportion of correctly identified pneumonia cases among all cases 

predicted as pneumonia. It reflects the model’s ability to avoid false alarms. 

Precision =
TP

TP + FP
 , (1) 

High precision, as shown in Equation (1), reduces unnecessary clinical interventions, which is 

particularly valuable in resource-limited settings where confirmatory diagnostics are costly. 

Recall, also known as sensitivity, measures the proportion of true pneumonia cases that the model 

successfully identifies. 

Recall =
TP

TP + FN
 ,  (2) 

In clinical terms, high recall, as shown in Equation (2), ensures that few pneumonia cases are 

missed, which is critical given the life-threatening consequences of delayed diagnosis in children. 

Specificity complements recall by quantifying the proportion of true negatives that are correctly 

classified as healthy, as shown in Equation (3). 

Specificity =
TN

TN + FP
 ,  (3) 

Together, recall and specificity provide a balanced view of model performance across both positive 

and negative classes, which is essential in a diagnostic setting where both under- and over-

diagnosis have clinical consequences. 

The F1 score represents the harmonic mean of precision and recall: 

F1-score = 2 * 
Precision * Recall

Precision + Recall
 , (4) 
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It balances the trade-off between minimizing false positives and false negatives, and is especially 

useful in cases where class distributions are imbalanced, as shown in Equation (4). 

Accuracy reflects the overall proportion of correctly classified cases. 

Accuracy =
TP + TN

TP + FP + TN + FN
 , (5) 

Although accuracy is intuitive, as shown in Equation (5), it can be misleading in unbalanced 

datasets, which is why it was always interpreted alongside the other four metrics. 

2.2.3. Epoch analysis and learning dynamics 

In addition to endpoint validation, epoch-by-epoch analysis was conducted to monitor learning 

dynamics. This analysis provided insights into convergence stability, overfitting tendencies, and 

the impact of different architectural and activation function choices. For example, early stopping 

criteria were used when validation loss plateaued or began to diverge from training loss, preventing 

unnecessary computation and reducing the risk of overfitting [56], [58], [59]. Learning curves were 

particularly useful in identifying whether augmentation strategies successfully regularized the 

models and whether architectural modifications led to smoother convergence. 

2.2.4. Robustness considerations 

Deep learning models strength is a crucial assessment procedure that is significant in determining 

reliability and clinical relevance of the models. In this dissertation, robustness was discussed under 

different complementary aspects. 

In assessing architectural robustness, in the first instance, the different CNN backbones, including 

InceptionV3, DenseNet201, InceptionResNetV2, and MobileNetV2 were compared by doing it in 

a systematic manner. It was through this comparison that it became possible to determine which 

architectures are capable of generating high predictive accuracy, as well as of generating consistent 

performance under varying conditions of training. Second, the optimization was robust when the 

experiments with varying learning rates and varying optimization algorithms (Adam and stochastic 

gradient descent with momentum) were implemented. These experiments introduced the idea of 

how convergence stability and the generalization ability are influenced by the optimization strategy 

in which poor settings were more likely to lead to the instability of performance even across the 

same architecture. Third, the data strength was investigated by applying the augmentation 

strategies of varying magnitudes and testing the models on the datasets that were created 
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deliberately and were just a bit dissimilar to the training distribution. This step was crucial in the 

assessment of the appropriateness of the models to the real-life situation when the image quality, 

the demographics of the patients, or the conditions of acquisition may vary. 

All these findings served to underscore the fact that, strength is not an accessory or peripheral 

matter but a primary determinant of clinical viability. A model with high sensitivity and unstable 

specificity in all validation folds, e.g., can provide inconsistent and ultimately unreliable diagnostic 

support. On the other hand, the models maintaining a balanced performance in both strength 

dimensions are much more apt to be integrated into clinical practice, where stability and 

reproducibility are of the same importance as raw accuracy. 

2.3. The impact of activation function selection 

In recent years, DNNs have been making stunning progress in the field of medical image 

processing, and pneumonia identification in a chest radiograph becomes among the most popular 

tasks in the domain. The models are found to be useful in forming complex patterns, which are 

ambiguous or hard to perceive in human beings to any extent [35], [46]. Perhaps, the most crucial 

design choices of DNN construction are activation functions whose core functionality relates to 

network behavior learning in an effective manner, generalizing and converging [60]. The form of 

non-linearity that is employed in order to introduce the network is via the application of activation 

functions; the functions enable the network to map any type of complex functionality as well as 

model a more complicated correlation in the input data. Their design is directly affected as of the 

learning dynamics, representational capability, and execution of gradient-based optimistic 

algorithms [36].  

Traditionally, the default selection has been ReLU owing to ease of use, ease of computation as 

well as efficacy in alleviating vanishing gradient problems observed in the use of earlier operations 

such as Sigmoid or Tanh. Nevertheless, ReLU has its own detriments, such as the so-called dying 

ReLU issue, in which the neurons produce zero outputs regardless of the input and basically stops 

learning. To counter these disadvantages, a series of more complex activation functions were 

proposed to improve the learning capacity even more, particularly in a high-stakes sphere such as 

medical diagnosis [36], [61]. Here, the ordinary ReLU activation was replaced with a fixed one 

that maintained the advantages of ReLU in terms of sparsity, but much easier gradient flow and 
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sensitivity to significant features of images. This change made the model more accurate in 

distinguishing between healthy and diseased parts of the lung hence making classification more 

precise. This modification of the activation function enables the input data to be represented in a 

more fine-grained way, which is essential to enable the network to recover more informative and 

discriminative features important in the processing of visually complex medical images [62]. Other 

models do not just substitute the normal activation functions, but have a mixed (hybrid) or 

heterogeneous structure, with various neurons or layers using different types of activation. These 

architectures take advantage of the different learning properties of each of the functions. As an 

illustration, networks based on a combination of activation functions have shown the capacity to 

carry out implicit feature ranking. The lower-index neurons are expected to have a higher 

activation sensitivity in these models and consequently represent a dominant feature in the network 

at early stages [36]. his structural characteristic makes pruning after training, which are less 

influential, without much degradation in accuracy. This is not only an efficient way of making the 

computation but also helps to make the model interpretable, because one may better understand 

what key features it prioritizes [60], [61]. The other significant breakthrough in the activation 

functions study is the emergence of Hard-Swish (H-Swish) that is actively applied in the 

MobileNetV3 structure [31]. H-Swish is a computationally cost-effective replacement of Swish 

function. This activation is differentiable, continued and permits better gradient flow and permits 

the network to recognize less crude nonlinearities than ReLU. Utilizing MobileNetV3, it has also 

been used in MobileNetV3 where it has increased speed of inference and classification accuracy 

with its application particularly appealing in edge computing and mobile deployment usage. These 

are vital in those medical cases when real time analysis can be needed, like in the case of point of 

care testing diagnostics [31]. The Mish activation is also rather promising, as the last one raised a 

lot of interest owing to being non monotonic, smooth and self regularising [37]. There is no sudden 

transition and Mish has been exhibiting better convergence during training. In contrast to ReLU 

which has the problem of the sharp output threshold and the gradient disappearing on negative 

inputs, Mish has a non-zero gradient at these points, enabling the network to learn better even 

when slightly poor input is present [37]. As applied in deep convolutional networks, Mish has 

contributed to large performance improvements when included as part of the InceptionResNetV2 

network. The Mish-activated model exhibited substantially higher accuracy of around 97.61%, 

making it superior to the models provided by other configurations using ReLU or Swish functions 
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in experiment. The reason is that lung images contain mixed patterns of intensity and fluid 

accumulation location, which are frequently very diffuse and complex to describe. Mish has 

demonstrated proficiency in capturing the non-trivial interactions between pixels in such images. 

As shown in Figure 2.2, ReLU thresholds all negative inputs at zero, leading to sparsity but at the 

cost of potential information loss. Swish introduces a smooth transition that retains small negative 

values, which supports better gradient flow and richer learning. Mish further refines this behavior 

with a smooth, non-monotonic shape, enabling self-regularization and the capture of subtle pixel 

interactions. These properties explain why Mish tends to achieve superior convergence and 

classification accuracy in medical imaging tasks compared to ReLU and Swish. 

 

Figure 2.2. Comparative visualization of ReLU, Swish, and Mish activation functions. 

A combination of these results, justified in CP1, indicates that the choice of activation functions 

must be further based not only on their computational effectiveness, but with attention to domain-

specific needs of the medical classification task. In medical imaging, data is normally noisy and 

has slight exceptions and differences among patients. The activation function must also allow the 

network to be expressive and stable, i.e. capable of learning on small and unbalanced datasets, but 

sensitive to rare or complex features. Moreover, it is not only the model accuracy that is affected 

by the selection of the activation functions. These functions like H-Swish and Mish influence the 
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time of training, convergence rate, model size and energy consumption which are crucial attributes 

in the context of operations in the real world. As an example, the reduced computational resources 

or time to apply such an algorithm in clinical practice require faster convergence and less energy 

consumption to be applicable and scalable to use [63]. Functions with smooth gradient values over 

larger domains of inputs are more likely to respond well to these methods and produce consistent 

and stable training. In deep architectures, this synergy is especially significant because, due to 

gradient degradation, (per layer) effects may compound into one another. Besides, with explainable 

AI gaining more significance in the fields of medicine, the influence of the activation function on 

feature attribution and saliency mapping should also be taken into account [38]. The use of 

activation functions that enable feature representation that is richer and stable enhances the 

interpretability of models, which can help clinicians make sense of their foundations of a 

prediction. 

2.4. Architectural improvements for feature representation 

Neural network architectures have an important impact on defining the efficacy of deep learning 

networks in task which enables the classification of medical images and specifically the 

classification of pneumonia [43], [51]. The aim of architectural developments in CNNs is to 

optimize representational power of models and to trade accuracy and efficiency and complexity of 

models. Several established approaches to improving the ability of CNNs to extract meaningful 

features of the chest radiographs have been employed in the last several years, including multi-

channel processing, the use of dedicated convolution blocks, and stabilization [32]. The most 

famous one is probably the InceptionV3 architecture which introduces a number of new features 

which assist in ensuring efficient and accurate feature extraction. It is founded on a model, which 

employs the normalization strategy of the inputs of the layers to restrict the internal covariate shift 

and stabilize the training. It has also applied the convolution factorization; the larger convolutional 

kernels are divided into smaller convolutional kernels. This reduces the parameters and also 

increases the computational efficiency of the network [64], [65]. The architecture is also based on 

different multilayer perceptron (MLP) convolution layers to introduce non-linearity and augment 

the capability of the model to generalize complex patterns. The Inception module that consists of 

parallel paths in convolution with different kernels sizes enables the model to process similar 

features of different scales simultaneously. These advances allow InceptionV3 to reach high 
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accuracy rates when doing classification because they focus on significant spatial hierarchies and 

feature abstractions that are vital to identify pneumonia-specific variants of chest X-ray images 

[32], [34]. In order to complement such complex designs, lightweight architectures like 

MobileNetV3 have introduced improvements in an effort to improve performance regardless of 

bound elements [66], [67]. It has depthwise separable convolutions in which conventional 

convolution operations are separated into two parts, namely depthwise convolution which 

performs a single filter on each input channel and pointwise convolution that pairs the outputs 

[67]. In this method the load and the number of parameters is drastically cut down. It is another 

extension of MobileNetV3, as such it also incorporates ReLU and H-Swish activation functions, 

strided, and pooling operations into modular blocks. These architecture choices have demonstrated 

superior classification accuracy with an efficient performance that fits the application on mobile 

and embedded systems, which makes the model highly applicable in point-of-care diagnosis where 

the computational requirements are low. Along with more sophisticated networks, simplified ones 

have been suggested to be enhanced as well [31]. The modified LeNet model attached to the 

traditional LeNet is a form of the traditional architecture that repeats and concatenates multiple 

copies of the architecture and adds layers of batch normalization to stabilize learning. It also uses 

dropout layers in its design, which reduce the possibility of overfitting since a percentage of 

neurons are dropped randomly as they are trained [62]. These comparatively easy but efficient 

modifications lead to the better generalization and stability, and claimed precision rates are over 

the 96% mark in pneumonia categorization tasks [62]. In addition, such networks are attractive to 

work in real-time screening as they have a shorter running time and require fewer computations to 

operate [35]. Another architecture trick that has proved to be fruitful has been an introduction of 

multi-scale and strided convolutions. Such convolutional methods are specially effective to 

promote feature extraction by varying receptive field and the grain size of amassed spatial data. It 

is proven that strided convolutions are highly effective in deep architecture like 

InceptionResNetV2 where it pays attention to localized fine-grained patterns on images [68], [69]. 

Meanwhile, the multi-scale convolutions are more efficient with the shallower networks such as 

the DenseNet201 and MobileNetV2 since the networks are capable of detecting more of the 

semblance in the lung fields. The combination of the two strategies within a given architecture 

provides the model with an opportunity to model both the global and local characteristics and 

identify more clearly the complex and spatially variable appearance of pneumonia. To buttress the 
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operations of models, batch normalization, dropout, and data augmentation will tend to be engaged 

in structuring the network in such a manner that the functioning becomes stable. In contrast to 

dropout, batch normalization has the propensity to guarantee the constant flux of the gradient 

through training and consequently, making a quicker convergence and reducing any vulnerability 

to the initialisation. The dropout technique increases the power of generalization since the neurons 

become incompatible with one another, in contrast to data augmentation, which is an artificial 

increase of the training set that contains variations, i.e., rotation, flipping, and scaling of the data 

in the training set and therefore, it improves the use of the model to generalize to unseen data [59], 

[70]. The combination of these building blocks, such as novel and powerful convolution blocks, 

lightweight design, multi-scale computation and stability layers are helpful in boosting the feature 

constructing capacity of CNNs altogether. They can make models learn robust, discriminative 

features based on heterogeneous and usually subtle patterns in the pneumonia radiology images. 

Such applications are of special concern in clinical settings where precise and prompt diagnosis 

can make the defining difference, and the visual distinctions between the healthy and pathological 

may be subtle or obscured by imaging artefacts and inter-patient differences. 

Among these strategies, the integration of systematic training procedures and specialized 

convolutional mechanisms plays a pivotal role. To better illustrate how these architectural 

principles are operationalized, the following algorithms summarize the main methodological steps 

undertaken in this research. They encapsulate (Algorithm 1) the end-to-end process of CNN 

training and evaluation, (Algorithm 2) multi-scale convolutional blocks with Mish activation, and 

(Algorithm 3) strided convolutional operations with Mish activation. 

Algorithm 1: Training and evaluation of CNN for pneumonia recognition 

 

Input: Training dataset directory train_dir, Validation dataset directory validation_dir, 

Pretrained base model CNN_base_model, Batch size batch_size, Number of epochs epochs 

Output: Trained CNN model, Evaluation metrics (Accuracy, Precision, Recall, F1-score, 

Specificity), Confusion matrix and classification report 

1. Begin 

2. Step 1: Initialize training configuration 

  a. Define callbacks: learning rate reducer on plateau, CSV logger to record training 
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details 

  b. Calculate dataset properties: 

    – nb_train_samples ← number of images in train_dir 

    – nb_val_samples ← number of images in validation_dir 

  c. Define activation functions: 

    – Swish(x) = x · sigmoid(x) 

    – Mish(x) = x · tanh(softplus(x)) 

3. Step 2: Configure data augmentation 

  a. Initialize ImageDataGenerator with rotation, zoom, width/height shifts, and 

horizontal flips 

  b. Load data generators: 

    – train_generator ← training images resized to (224 × 224) 

    – validation_generator ← validation images resized to (224 × 224) 

4. Step 3: Define and compile model 

  a. Load base model CNN_base_model (pretrained on ImageNet, include_top = False) 

  b. Add custom layers: 

    – Convolutional layer with Mish/Swish activation 

    – GlobalMaxPooling layer 

    – Fully connected layer with sigmoid activation 

  c. Compile model with optimizer (Adam), loss (Binary Crossentropy), and metrics 

(Accuracy, AUC) 

5. Step 4: Train the model 

  a. Train using model.fit() with steps_per_epoch = nb_train_samples / batch_size 

  b. Validate using validation_steps = nb_val_samples / batch_size 

  c. Apply callbacks (lr_reducer, csv_logger) 

6. Step 5: Evaluate the model 

  a. Generate predictions using validation_generator 

  b. Compute confusion matrix and classification report 

  c. Normalize confusion matrix values 
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7. Step 6: Visualize results 

  a. Plot heatmap of confusion matrix 

  b. Annotate heatmap with class labels (healthy, pneumonia) 

8. Step 7: Save the model 

  a. Save trained model to disk (e.g., cnn.h5) 

9. End 

Algorithm 2: Multi-scale convolution with Mish activation 

 

Input: Input image, set of convolution kernels {Kernel1…KernelN}, corresponding biases 

{Bias1…BiasN} 

Output: Combined multi-scale feature map 

1. Begin 

2. Step 1: Initialize configuration 

  a. Define convolution kernels at multiple scales (e.g., 3×3, 5×5, 7×7) 

  b. Initialize empty list for storing feature maps 

3. Step 2: Apply multi-scale convolutions 

  For each scale k in {1…N}: 

   – Perform convolution: Feature_Mapk ← Convolution(Input_Image, Kernelk, 

Biask) 

   – Apply Mish activation: Feature_Mapk ← Mish(Feature_Mapk) 

   – Append Feature_Mapk to Feature_Maps 

4. Step 3: Aggregate representations 

  a. Concatenate all Feature_Maps along the channel dimension 

  b. Normalize aggregated feature maps (Batch Normalization) 

  c. Apply optional dropout for regularization 

5. Step 4: Forward to higher layers 

  a. Feed Combined_Feature_Map into subsequent CNN layers for classification 

6. End 
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Algorithm 3: Strided convolution with Mish activation 

 

Input: Input image, convolution kernel, stride parameter, bias 

Output: Downsampled feature representation 

1. Begin 

2. Step 1: Initialize parameters 

  a. Define stride parameter (e.g., stride = 2) 

  b. Select convolution kernel and bias 

3. Step 2: Perform strided convolution 

  a. Compute feature map using convolution with specified stride 

  b. Apply Mish activation: Activated_Map ← Mish(Feature_Map) 

4. Step 3: Post-processing 

  a. Apply batch normalization to stabilize gradients 

  b. Optionally apply dropout for regularization 

5. Step 4: Integration 

  a. Pass downsampled representation to subsequent CNN layers 

  b. Combine with multi-scale features if applicable 

6. End 

The inclusion of these algorithms emphasizes that architectural improvements in convolutional 

neural networks are not restricted to the selection of backbone models, but extend to the systematic 

integration of convolutional strategies, activation functions, and training protocols. This broader 

perspective is crucial in medical imaging tasks such as pneumonia recognition, where the 

discriminative cues in chest radiographs are subtle, variable, and often obscured by anatomical 

noise. By formalizing these methodological components into algorithmic steps, the design process 

becomes not only more transparent but also reproducible, which is a prerequisite for deployment 

in clinical practice. 

The training pipeline outlined in Algorithm 1 ensures methodological rigor by standardizing 

preprocessing, augmentation, and evaluation steps across experiments. Data augmentation plays a 

particularly central role here, as it allows the model to generalize across variations in patient 
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posture, imaging quality, and scanner-specific characteristics, which are typical sources of 

heterogeneity in medical datasets. The use of callbacks such as learning-rate reduction further 

enhances convergence stability, while the incorporation of multiple evaluation metrics (accuracy, 

precision, recall, F1-score, specificity) moves the assessment beyond simplistic measures and 

ensures that models are reliable across different clinical priorities, such as avoiding false negatives 

in high-risk patients. 

Multi-scale convolution (included to the Algorithm 2) is directly related to the problem of 

variability of scales in medical imaging. Pneumonia in viral pneumonia can manifest as diffuse 

opacities, small and grained, and in bacterial pneumonia, the pneumonia can manifest as larger, 

localized pneumonia. All of these various manifestations can be better captured by the network 

through parallel convolution with various sized kernels. Mish activation is used in this application 

to improve gradient flow and gradient transitions across features resulting in discriminative, as 

well as anatomically consistent features maps. This approach is particularly useful, as 

demonstrated in CP2, where interpretability techniques such as Grad-CAM are applied, where the 

identified locations are likely to be of clinical interest of the lung. 

Strided convolutions, outlined in Algorithm 3, serve a complementary role by enabling efficient 

downsampling without resorting to pooling operations that may discard valuable spatial detail. 

Strided convolutions, by implementing downsampling as a part of the convolutional process, 

maintain the structural continuity and boost the detection of fine-grained pathological patterns by 

the model particularly in later layers of network models such as InceptionResNetV2. These 

operations, in combination with Mish activation, give strong representations, which are sensitive 

to fine pixel-level changes without suffering the problems of vanishing gradients. 

2.5. Model interpretability and clinical trust 

A predictive performance alone is not sufficient to implement the AI in clinical workflow, namely, 

diagnostic imaging, but also additional interpretability and transparency along with trust in a 

clinician [71]. The decision-making paths of deep learning models may be cryptic with the 

increasing complexity of a specific model, and this attribute of learning models can become a 

significant barrier in the application of these models to a clinical practice. Interpretability methods 

fill this gap in some such way as Class Activation Mapping (CAM) and its extensions. They are 

techniques that offer post hoc visual interpretations of image areas that weight the predictions of 



34 

 

the model the most [26], [40]. Their use in chest radiography model has also shown to be especially 

useful when mapping outputs of these models to clinically relevant features. A notable method is 

Grad-CAM, which qualitatively looks at activating the discriminative area of the input images by 

means of heatmaps created over the convolutional features maps. Grad-CAM has demonstrated 

the ability to highlight patterns matching radiology results in matching pneumonia diagnosis 

models [40]. Another example is visual patterns, characteristic of viral pneumonia, which is 

usually diffuse and spread over both lungs, and sharp and localized in one of the lobes of the lung, 

in case of bacterial pneumonia [23], [72]. The results that have been obtained by using Grad-CAM 

visualization mechanisms have made the models attain correspondence to these clinical patterns 

hence strengthening the models reliability and relevance to diagnosis. The consistency between 

model attention and clinical intuition reinforces interpretability and boosts the confidence of 

physicians in model output [73]. Further, more complicated CNN models with concomitant 

application of Grad-CAM and new activation functions, including Mish, are presented as 

demonstrating enhancing interpretability and feature richness. Self-regularizing, non-monotonic, 

Mish activation function has superior effects in terms of flow of gradients and stability of the 

training process and this facilitates learning when it comes to subtle features [37]. With Grad-

CAM, Mish-activated models allow visualizing more continuous and important in a clinical 

context activation regions. It provides a more anatomically coherent anatomically consistent 

interpretive result to trace the path of the input images by medical practitioners. This functionality 

especially comes in handy in the areas of pediatrics and emergency care where quick and effective 

understanding of a chest radiograph is essential. This interpretive alignment has shown to not only 

have appeal in theory but has also proven to be verifiable in the practical sense. 

To further illustrate these aspects, Figure 2.3 presents Grad-CAM visualizations across four 

architectures (InceptionV3, InceptionResNetV2, MobileNetV2, and DenseNet201) applied to 

representative healthy, viral pneumonia, and bacterial pneumonia cases. In this experiment, 

MobileNetV2 and DenseNet201 were implemented as base models with Mish activation function 

and multi-scale convolutions, while the Inception networks employed Mish activation with strided 

convolutions, following the findings of CP3, which reported superior performance under these 

configurations. Multi-scale convolutional designs, particularly when combined with Mish, were 

shown to capture hierarchical and fine-grained spatial dependencies, enabling DenseNet201 and 

MobileNetV2 to highlight subtle pathological regions often overlooked by simpler kernels. On the 
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other hand, strided convolutions improved computational efficiency and maintained robust feature 

discrimination in deeper Inception architectures, making them highly suitable for deployment in 

real-time scenarios. The visualizations highlight how each network emphasizes diagnostically 

relevant regions: for healthy cases, activations are minimal and concentrated outside pathological 

areas, whereas in pneumonia cases, particularly viral and bacterial, the networks correctly localize 

diffuse and lobar patterns of lung involvement. Viral pneumonia activations tend to appear 

dispersed bilaterally, reflecting its diffuse nature, while bacterial pneumonia heatmaps are sharply 

localized, aligning with lobar consolidation observed in clinical radiology. Importantly, the Mish 

activation contributes to smoother and more continuous activation maps, reducing abrupt saliency 

transitions often seen with ReLU. This property enhances interpretability by providing 

anatomically coherent attention patterns, which are easier for clinicians to reconcile with 

radiological findings. Moreover, as shown in the CP3, Mish activation also accelerated 

convergence and improved classification accuracy, particularly when applied in conjunction with 

multi-scale convolutional modules, further strengthening its value in medical imaging. 
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Figure 2.3. Grad-CAM visualizations of healthy, viral pneumonia, and bacterial pneumonia cases 

across four models. MobileNetV2 and DenseNet201 were trained with Mish activation and multi-

scale convolutions, while Inception networks adopted Mish activation with strided convolutions. 

Furthermore, comparative studies have revealed that saliency maps identified by the CAM 

techniques tend to respond to similar regions that interest radiologists. The AI model identified the 

same portions of abnormality in the lung as radiologists in research concentrating on the diagnosis 

of Mycoplasma pneumoniae [23], [74]. Such overlap on attention regions both generated by 

machines and the regions that are expected by human beings builds trust and proves confidence 

on the internal integrity of the model. The clinical specialists will be more inclined to follow the 

suggestions of the model as a valuable constituent of diagnostics processes when they can observe 

the AI tool having the appearance of looking at anatomically and pathologically adequate areas 

[18], [26]. Architecture transparency and its deployment feasibility determine the interpretability 

and trustworthiness of a model too. Although the diagnosis accuracy can be high with ensemble 

models and complicated architectures like InceptionResNet or DenseNet, due to their complexity, 

it may be difficult to implement them in real-time and trace their path of decision-making. 

Practically, particularly where there are resource constraints, models must be employed, and they 

must be capable of balancing between performance and interpretability. It is clear that lightweight 

architectures such as MobileNetV3 built on the expertise of depthwise separable convolutions and 

small-sized architecture are more computation-efficient. These models are quick and less resource-

consuming, thus can be carried out on the bedsides or even in clinics which are located in rural 

areas. The paper has shown that MobileNetV3 can avoid fidelity to accuracy and interpretability. 

The model might also effectively give priority to diagnostically significant areas on the chest X-

rays based on tight latency budget and going through integrated Grad-cam visualizations. The 

combination of its compact size and its decipherable nature along with the help of interpretability 

was friendly to be integrated in mobile health care workstations like the imaging review 

applications on tablets. Not only is this technically solid but it is also practically viable, especially 

in situations in which time is of the essence or there is a limitation in infrastructure to support 

medical facilities. It is also easier to interpret because training methods and elements of 

architecture are steady and the same. Internal covariate shift is also mitigated by the consideration 

of batch normalization, and dropout layers offer the mitigation of overfitting, which allows a 

decision boundary to be more generalizable. Members of these methods equalise the behaviour of 
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models and reduce the probabilities of unstable or meaningless activations, and this, again, 

contributes to the need to rely upon design predictions [26]. The steps will assist in creating 

effective and interpretable AI systems when it is used in combination with post hoc interpretation 

methods including Grad-CAM. Moreover, jointly trained models with saliency sensitive loss 

functions or interpretability regularization can be learnt to be consistent with the medical domain. 

Although the discussed methods are not the norm, it is a necessary medio crepu that will bring 

model optimization and clinical thinking to the closest [40], [48]. They would prefer to ensure that 

high predictive accuracy is being achieved at the cost of interpretability but in conjunction with 

interpretability. The methods can as well be employed to make the model more like the expert 

decision-making methods by making sure that the model pays attention to the pathologically 

important areas during the training. The interpretability tools also serve as a critical point of 

interaction between the human clinicians and the AI systems in regards to human-computer 

interaction. Clinicians can use them to validate the decisions of a model or dispute them and 

provide an opportunity to do better based on the trend [18]. As long as clinicians can grasp reasons 

why a model has chosen a specific decision, they tend to accept such model as a predicative tool 

that can be looked upon as a collaborator and not as a black box. This is a game-changer and turns 

a model into a living assistant with the help of which one is able to engage in evidence-based 

decision-making. 

2.6. Comparative performance of deep learning architectures 

Machine learning applications to medical images can help greatly in the field of automated 

pneumonia detection in particular of chest radiographies [46]. The major success factor of these 

practices is related to the selection of an apt neural network structure which in effect determines 

the capabilities of any given model to acquire detailed visual features, generalize to various 

collections and maintain computational complexity [33]. Classic models like VGG16 or AlexNet 

are classical models that have historical value but competing with newer solutions in a specific 

medical task may underperform in such situations. As an instance, a designed deep CNN (DCNN) 

surpassed two popular networks, VGG16 and AlexNet, on a pediatric pneumonia dataset 

significantly. The custom DCNN obtained an accuracy of 96.09% and a sensitivity of 93.58% 

regarding specificity of 98.61%, the VGG16 and AlexNet obtained validation accuracy of 92.3% 

and 93.7 respectively [75]. These findings highlight the fact that architectural simplicity is not 

sufficient in medical classification tasks, which have to be associated with high sensitivity and 
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specificity, whereby, model expressiveness and versatility are the pathways. Further, lightweight 

and shallow architectures, under proper adjustment, are also able to produce competitive results. 

A smaller architecture based on the LeNet architecture, with concatenated convolutional layers 

and task-specific additions, an architecture achieved high accuracy values of 96% on a pneumonia 

chest radiograph dataset [62]. This undercuts the general belief in the overall superiority of deeper 

networks and indicates that the relation between architecture and task, as well as dataset 

characteristics (balancedness, size, etc.), are equally essential. 

State-of-the-art CNNs ResNet, DenseNet and InceptionResNetV2 have displayed remarkable 

performance in the classification of pneumonia, in large part to the innovations in terms of feature 

reuse and graduate stability [47], [61], [76]. Still, architectures with residual connections like 

ResNet50 can effectively solve the issue of gradient flow remaining between deeper layers, thereby 

eliminating the problem of the vanishing gradient that majorly occurs in conventional deep 

networks [77]. Comparatively, the InceptionResNetV2 model with both inception modules and 

residual connections recorded the highest accuracy of 97.18% after using the Mish activation 

combination and strided convolutions. InceptionV3 and denseNet201 came next with accuracies 

of 96.84 and 96.76 respectively. The models took particular strength in classification tasks where 

we have to distinguish between bacterial and viral pneumonia in the classification task the multi-

path based feature extraction approach proves to be very effective in improving the performance 

on such fine-grained tasks. The practicality of deep CNNs in radiology applications at smaller 

scale and thus more variable data sets (such as in pediatrics) has also been tested. It is important 

to note that ResNet50 has become a consistent option as a backbone in that regard. Using the 

pediatric datasets, a study was performed on ResNet50 structure, where it was shown that after 

fine-tuning through transfer learning, the model was able to achieve a steady test accuracies of 

between 82-83%, which outperformed DenseNet121 and EfficientNetV2S [78]. The latter models 

showed overfitting and reduced generalization even with the more deeper and complex 

architectures. The higher performance of ResNet-based models in these instances can also be 

highly explained by the fact that ResNet-based models are designed to feature residual blocks that 

enable very deep architectures to be trainable because of the maintained identity mappings as well 

as the potential for a continuous flow of the gradient through these models [78]. These architectural 

advantages are more significant in the medical areas where the common issues of medical domains 

include class imbalances and limited data. 
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Transfer learning has emerged to be a key tactic in medical-imaging use cases in deep learning. 

The use of weights already learned across large-scale natural visual data (e.g., ImageNet) during 

initialization of networks gives the networks access to generalized low-level image representations 

that reduces the data necessary and training costs a great deal to accomplish the medical-relevant 

task [48], [51]. For instance, ResNeXt50 and WideResNet50, both pretrained and fine-tuned for 

pneumonia classification, achieved accuracies exceeding 95% within the first few training epochs 

[79]. Their architectural enhancements, such as grouped convolutions and wide residual blocks, 

offer additional flexibility and parameter efficiency. Even ShuffleNet, a model optimized for 

mobile environments, was able to converge to performance levels above 90% after sufficient fine-

tuning, despite initially achieving only ~80% accuracy in early epochs [79]. These outcomes affirm 

that the learning strategy (i.e., from scratch versus transfer learning) often exerts a greater influence 

on model effectiveness than architectural depth alone. 

Although high-performance models like DenseNet201 or InceptionResNetV2 offer impressive 

accuracy, their computational demands may restrict their usability in low-resource or real-time 

environments. For clinical deployment in rural areas or mobile health applications, lightweight 

models such as MobileNet, ShuffleNet, or even customized LeNet derivatives offer a compelling 

balance between performance, interpretability, and efficiency [62], [79]. Moreover, the integration 

of interpretability tools such as Grad-CAM or saliency maps further enhances the clinical 

trustworthiness of these models. Simpler architectures, when combined with transparent feature 

attribution methods, often provide clinicians with greater confidence in model predictions, 

especially in high-stakes diagnostic scenarios [26]. 

In order to put these conclusions into more context, Table 2.2 provides the overview of comparative 

findings of various CNN models on pneumonia classification in various datasets. The tabulated 

results are helpful to understand the extent to which architectural design, scale of data, and training 

strategy have an overall effect on the performance results. In the analysis of the works, it becomes 

clear that there are strong correlations between performance differences among CNN models and 

their dependence on the size of datasets, their complexity, and the innovations. For example,  

Jaganathan et al. [62] report that a modified LeNet-5 architecture reached an accuracy of 96.00% 

on a dataset of 84,484 radiographs, while  Lan et al. [80] observed substantially lower accuracy of 

81.00% with DenseNet121 trained on only 578 images. This highlights how limited dataset size 
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can restrict the generalization capacity of even state-of-the-art models, whereas larger datasets 

enable simpler architectures to remain competitive with more complex networks. 

There has also been strong potential of ensemble approaches. On the experiment with the 

InceptionResNetV2, DenseNet201, or VGG16,  Ha Pham and Tran [42] reached an accuracy of 

95.03%, whereas  Mabrouk et al. [81] achieved 93.91% with an ensemble of MobileNetV2, 

DenseNet169, and Vision Transformer. These results imply that ensembles can capitalize on the 

complementary strengths of individual net work designs to address weaknesses arising out of a 

particular network design. However these strategies are often more computationally intensive and 

are therefore limited to low resource or in-real-time clinical settings. 

Custom CNNs continue to represent a competitive alternative to established architectures. used a 

tailored DCNN with 96.09 percent accuracy and  Stephen et al. [82] and  Prakash et al. [83] 

obtained more than 95 percent accuracy using custom-built designs with medium-scale datasets. 

Likewise,  Sotirov et al. [84] achieved close to 95% accuracy with a simple CNN that was trained 

on merely 3,000 images, which may further support the fact that even a simple architecture with 

attentive optimization can achieve high diagnostic accuracy. 

Several studies also emphasize the potential of novel architectures and optimization methods.  

Vrbančič and Podgorelec [85] achieved the highest reported performance in the comparison, with 

96.26% accuracy using the SGDRE method.  Khan et al. [49] leveraged EfficientNetB1, 

NasNetMobile, and MobileNetV2 on a dataset of over 21,000 images, reaching 96.13%. These 

results highlight the scalability and efficiency of modern architectures, which are increasingly 

attractive for clinical deployment scenarios requiring both robustness and computational economy. 

Another determinant is transfer learning. Pretrained on ImageNet and fine-tuned to pneumonia 

classification, both ResNeXt50 and WideResNet50 both achieved over 95 percent accuracy in the 

initial training steps [79]. These results further support the significance of the initialisation 

approaches since initialised weights offer generalisable low-level feature extractors, which 

significantly lower the data demands and the training expense. In comparison, fully trained models 

often slow down converging and can overfit more easily especially with small medical datasets. 
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Table 2.2. Comparative performance of convolutional neural network architectures for pneumonia 

classification across different datasets. 

Reference Year CNN Model No. of Images Accuracy 

Mardianto et al. (2024) 2024 CNN+SVM 6140 0.9200 

AlGhamdi (2024) 2024 MobileNetV3 14,000 > - 

Jaganathan et al. (2024) 2024 LeNet-5 84,484 0.9600 

Dzhaynakbaev et al. 

(2024) 
2024 VGG16 5228 - 

Ha Pham and Tran (2024) 2024 

Ensemble 

(InceptionResNetV2, 

DenseNet201, VGG16) 

5856 0.9503 

Mabrouk et al. (2022) 2022 

Ensemble (MobileNetV2, 

DenseNet169, Vision 

Transformer) 

5856 0.9391 

Stephen et al. (2019) 2019 Custom CNN 5856 0.9531 

Lan et al. (2024) 2024 DenseNet121 578 0.8100 

Kaya (2024) 2024 DenseNet121 5856 0.9503 

Manickam et al. (2021) 2021 ResNet50 5232 0.9306 

Wang et al. (2022) 2022 Custom CNN 5857 0.9280 

Vrbančič and Podgorelec 

(2022) 
2022 SGDRE method 5858 0.9626 

Yi et al. (2023) 2023 Custom CNN 5856 0.9609 

Khan et al. (2022) 2022 

EfficientNetB1, 

NasNetMobile, 

MobileNetV2 

21,165 0.9613 

Sotirov et al. (2025) 2025 Custom CNN 3000 0.9493 

Prakash et al. (2023) 2023 Custom CNN 7767 0.9615 

Kahwachi and Saed (2022) 2022 

VGG19,  InceptionV3,  

Resnet50,  Inception-

ResNetV2,  DenseNet121 

2482 0.9417 

Sharma and Guleria (2023) 2023 VGG16 5856 0.9215 

Singh and Tripathi (2022) 2022 
Quaternion Convolution 

neural network 
5863 0.9375 

CP2   5856 0.9642 
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Overall, it can be concluded that the findings listed in Table 2 indicate that the most optimal 

architecture when it comes to pneumonia classification does not exist. Rather, model performance 

depends on the context and is dictated by the scale of datasets, classes distribution, computational 

resources, and uniqueness of clinical deployment. Whereas more complex architectures like 

DenseNet201 and InceptionResNetV2 can demonstrate unparalleled accuracies when using large 

and equally balanced datasets, less complex models like MobileNet or optimized versions of the 

LeNet architecture are still more suitable in environments with limited resource availability or 

diagnostic needs in real-time. The further addition of the interpretability tools, makes the clinical 

trust even more, which points out that the correspondence between architecture, training strategy, 

and application domain is the key factor contributing to successful implementation in the medical 

imaging sphere. 

2.7. Convergence dynamics and training stability 

The basics of the applied clinical diagnostic systems using deep learning models are efficient and 

stable training of these models. The convergence speed and stability of training data in tasks 

involving the processing of medical images such as automated recognition of pneumonia based on 

radiographs on the chest significantly influence the reliability of the given diagnosis, the model 

generalizability, and the overall usability of the system [18], [26]. These issues have had a series 

of solutions to which different approaches have been developed to address these issues including 

application of transfer learning, more novel architectural design and optimization of 

hyperparameter tuning. One of the most potent conversion practices of accelerating the rate of 

convergence is transfer learning. Transfer learning may lead to encapsulating models with low-

level and mid-level features that are highly generalizable to visual domains through the 

initialisation of a model with pretrained weights gained on datasets as large as ImageNet [34]. It 

was found that the pretrained models, such as ResNeXt50 and WideResNet50, reach over 95% of 

accuracy, classification with only a few epochs of training [79]. This quicker learning is made 

possible by such features as edges, corners and textures that are vital in the interpretation of 

medical images to be reusable. The entirely-trained learning curves of models can be significantly 

slower and even after extremely long training runs still can be only fractions as accurate by 

comparison. This gap shows the substantial value of the transfer learning in enhancing the model 

performance and reducing training durations on clinical setups with limited data. 
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The next critical element, in stabilizing training, is the architectural structure of the so called neural 

networks. The original significant departure is that it adopts residual connections as in ResNet 

architectures. Such connections hasten the propagation of variousiations between layers and, 

therefore, contribute to the solution of the vanishing gradient problem and train deeper networks 

without causing a significant decline in performance [79]. The residual units stabilize the 

backpropagation by providing shortcut routes to the flow of the gradient and have a uniform 

updating of parameters throughout the network. Such skip connections give strength to a model 

and simplify training a model. The other effective way of providing stable training is the batch 

normalization (BN). This makes the BN minimize the covariance shift between the internal 

variables and the distribution of the layer inputs could be standardized during training in order to 

be able to increase learning rates. With pneumonia classification models adapting the structure of 

the LeNet, BN layers inserted between convolutional layers sped up convergence and alleviated 

problems of gradient explosions [62]. The effects of this normalization were more streamlined 

patterns in training, and reduced initialization sensitivity that is vital in problems where the medical 

images are noisy or those of low contrast. Also, the BN led to better regularization, which assisted 

in avoiding overfitting during the training process. 

To improve further on the overfitting and increase generalization, dropout regularization is 

generally used. At every training cycle, dropout temporarily interpolates a portion of neurons and 

the values are usually between 0.2 and 0.5, which promotes the network to learn invariant and non-

redundant representations [90]. Empirically the use of dropout has been particularly helpful in the 

case of medical imaging where data are typically small, and subject to overfitting. Based on 

empirical findings, it has been indicated that dropout, combined with BN, enhances training 

stability and reliable convergence. 

In addition to the more heavy architectures with ResNet, there is an interest in lightweight CNNs, 

e.g., MobileNetV3 because of the efficiency on device with limited compute capacity. However, 

there is a tendency of this model to converge more gradually especially within early epochs 

because of the less capacity of representation. Ahead, the MobileNetV3 underwent evaluation on 

two datasets with the same architectural settings. This was a controlled setting that permitted the 

elimination of variability in the dataset and in doing so revealed how disparities in the performance 

were more probable because of data variability as opposed to architectural variations. Such results 



44 

 

underline the significance of the same experimental conditions when diagnosing performance 

bottlenecks. 

Along with the architectural component, activation functions play an important role in the process 

of training. New non linear models like Mish and H- Swish have performed better than classic 

ReLU in its gradient flow and learning aptitude [31]. This has the benefit that these functions are 

smoother, non-monotone, which can make the optimization more efficient in the deeper networks. 

As demonstrated in CP1, Mish has already been effectively used with InceptionResNet structures, 

which allowed achieving improvement in terms of accuracy and acceleration. Selection of the 

activation function will therefore have a direct effect on how effective the model is at 

generalization particularly when trained using little data. 

Training stability also has an optimization strategy at the core. Other optimizers due to their 

adaptive nature and the fact that learning dynamics themselves are adjusted based on gradient 

feedback can be more efficient at converging, including Adam and RMSprop, commonly used with 

learning rate scheduling [58], [91]. These optimizers, especially, are exceptional at separating 

noisy and non-stationary gradients, much more likely met in real life, in medical datasets. 

Moreover, data augmentation and stratified sampling are two more methods that will address 

convergence by enriching the diversity of data and class imbalance. 

The empirical compare shows that the models that use combination of transfer learning, 

normalization, dropout, and residual connections produce much stronger loss and accuracy using 

fewer epochs of training. As a case in point, pretrained inceptionresNetV2 and densenet201 models 

consistently provide results that are above 95% accuracy even as they converge quickly. By 

comparison, models that have not undergone these enhancements tend to take additional training 

cycles and are more inconsistent in their results. 

2.8. Limitations, generalizability, future directions, and practical 

implications 

Although the current state of innovations in utilizing deep learning models in medical imaging is 

encouraging, there still exist a number of significant limitations of the research in that field of 

study, especially regarding the aspects of data diversity and model generalizability [59]. There is 

worry in that single-source, publicly accessible datasets are used as one of the key factors since 

they are frequently gathered in a certain clinical setting. Such tight data exclusion constitutes a 
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possible bias based on the quality of the images, acquisition conditions, and the demographic 

profile of the patient [92]. Therefore, the models could be ineffective in generalizations when used 

in other healthcare environments. Domain shift is the phenomenon that shows differences in 

performance between using a certain model trained over one dataset on new data that are distinct 

in regards to hardware, image acquisition method, or the population, e.g., age, sex, comorbidities 

[32], [91]. Experiments that have preceded show that small shifts in the calibration of the X-ray 

machinery or image protocols would trigger a massive decline in model performance [93], [94]. 

Thus, the variability in the domains is a critical issue to consider when the design of strong 

diagnostic systems. Other methods like domain adaptation or style transfer based methods--which 

seeks to make image distributions similar across domains have been seen to alleviate these effects. 

The other limitation is the interpretability of deep neural networks. Although methods such as 

Grad-CAM give a rough idea of how the model works in showing which areas are important in 

making decisions, it is still inherently a post-hoc explanation [71]. Such heatmaps just imply 

gradient-based affiliations and certainly not necessarily causal affiliations. This implies that some 

emphasised area might not be reflective of the real pathological foundation of prediction, but 

instead some statistical affiliation due to training. Therefore, while Grad-CAM and similar 

visualizations improve transparency, they cannot fully ensure that the model's reasoning aligns 

with medical understanding [26], [40]. This limits trust and clinical confidence in automated 

outputs, especially in high-stakes scenarios such as pediatric diagnostics. 

Looking forward, future work should focus on developing models trained on more diverse and 

multi-institutional datasets, which would improve the reliability and external validity of diagnostic 

systems. Incorporating data from different geographic, demographic, and technological sources 

can help mitigate overfitting to specific imaging environments. In addition, improving the internal 

transparency of models—through architectural innovations or uncertainty quantification—could 

enhance clinician trust. Such methods may include probabilistic modeling, ensemble predictions, 

or attention mechanisms designed to offer more interpretable decision pathways. 

In summary, while convolutional neural networks have demonstrated high accuracy in classifying 

pneumonia from chest X-rays, their clinical deployment remains constrained by limitations in 

dataset diversity and interpretability. It will take more than technical solutions like domain 

adaptation and more transparent architectures in order to overcome these challenges, but also more 
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rigorous cross-validation and interdisciplinary collaboration. These underlying issues are the only 

things that can help such models advance towards more extensive and less risky use in medical 

diagnostics.  
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3.  CONCLUSIONS 

 

The present doctoral thesis resolves the problems of automatic classification of pediatric 

pneumonia using deep learning techniques and develops, in some sense, a new field of 

automatic classification of pediatric pneumonia cases based on chest X-rays in the aspect of 

model architecture improvements, features extraction smoothness and interpretability. The 

studies are trying to address basic yet critical issues of medical image research, and these are: 

to attain greater diagnostic accuracy, to ensure that the model is applicable to the broad range 

of situations of the imaging phenomenon, and to enhance interpretability of model decision. 

Another critical part of the dissertation is the integration of new functions of activation, Mish, 

into CNNs and the development of the architecture with multi-scale and strided convolutions. 

The study focuses on the explainability methodology as the way of establishing trust within 

the clinical setting and ensuring that the number of health care professionals who want to use  

the algorithms will increase in the context of diagnostics.  

The most significant discovery of the dissertation is that the selection of the activation 

functional affects the performance of the deep-learning models in medical imaging 

significantly. It is empirically confirmed that a replacement of conventional ReLU with less 

trivial non-monotonic systems such as Mish can provide large improvements, in terms of 

performance, across most network topologies. The self regulative behavior of Mish in all, 

accuracy, precision, recall and F1-score, classification tasks achieved higher scores than both 

ReLU and Swish, which had well-mannered behavior. Advances owe to the capability of Mish 

to maintain stable gradient propogation, and neural sparsity reduction during training - not a 

trivial aspect in transfer learning given the relative paucity of data, and the heterogeneity of 

pediatric chest X-ray data one can find. The proposed Mish-based CNNs reached an accuracy 

of up to 97.61%, with recall and precision values exceeding 96%, thereby outperforming both 

traditional ReLU and the more recent Swish activation across all tested backbones.  

Besides these optimizations, the dissertation also explores architectural optimizations of 

CNNs that are termed the multi-scale and strided convolutions. These architectures are meant 

to enable extraction of features across a variety of receptive fields which are not only covering 

gross anatomy, but also the finer pathological details. These adaptations gave a stronger 
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generalization models and higher attenuation to transformation of the form of pneumonia 

when higher-complex networks, such as DenseNet201, InceptionResNetV2, InceptionV3, are 

used. Findings verify that multi-scale convolutional layers are representative of the 

pneumonia associated opacities that can differ extensively in relation to the morphology, size 

and the spatial distribution. It was this architecture combined with Mish activation which 

enabled reduced convergence time during training and simultaneously a higher classification 

accuracy which was less foldsensitive. Comparative evaluations demonstrated that 

DenseNet201, when augmented with multi-scale, achieved notable gains in sensitivity for 

both viral and bacterial pneumonia, with overall classification performance surpassing the 

baseline by a significant margin. 

Although the accuracy is still a significant measure of performance when assessing AI-based 

diagnostic systems, clinical implementation involves models that are potentially transparent 

and, therefore, comprehendable. To this end, the dissertation made use of the post-hoc 

explainability tool Grad-CAM. Grad-CAM produces heatmaps, which indicate the areas of 

the original X-ray images of the reference that the model is using during the prediction. This 

level of visual interpretability played a critical role in illustrating the diagnostic explanation 

behind the networks and it was discovered that the models using Mish and multi -scale 

convolutions had more precise and clinically significant activations in comparison to the 

models using the traditional elements. Two important benefits of this form of interpretable 

visualization are that it brings clinicians into the reasoning performed by the model and 

contributes to increasing diagnostic trust, which is a major requirement before the use of AI 

in high stakes medical settings. 

In aggregate, the findings of this study support three key contributions: the first one is that 

with new activation functions like Mish, it is possible to reduce information loss during 

training and vastly improve the performance of the models; the second is that the 

augmentation of models with multi-scale and dilated convolutional methods can enhance the 

flexibility and robustness of CNNs trained with variable pediatric imaging data, and the third 

is that the implementation of Grad-CAM visualization can greatly contribute to the 

interpretability of model predictions, which can be easily accepted by clinicians and 

integrated into the diagnostic process. 
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Nevertheless, some challenges remain. The effective training of deep learning models, 

especially in medical imaging, such as pediatric pneumonia, is often limited by a lack of 

numerous, high-quality annotated datasets. Challenges surrounding ethical use, 

accompanying data sharing policies, and even variations in imaging protocols between 

hospitals contribute to problems in collecting standardized datasets. In addition, robustness 

of the models trained is often limited by dataset or imaging condition, raising concerns 

regarding generalizability in real-world settings. While this research has developed 

advancements that have improved generalizability specifically through architectural changes, 

the best architectural approach to develop a trained model that can be integrated into 

heterogenous, clinical environments remains an open area of research.  

Moreover, the computational requirements of more advanced CNN architectures limit their 

potential deployment in resource-limited contexts where burden of pneumonia is the highest. 

While the dissertation assessed efficiency-optimized models, including MobileNetV2, within 

its comparative analysis, future work should investigate model compression, quantization and 

edge deployment compared to computers in their respective analysis and implementation. 

Finally, although Grad-CAM offers a convenient viewing workflow, the key focus should be 

the creation of more practical, user-friendly and interactive explanation systems that can be 

more readily integrated into clinical radiology systems.  

The implication of this dissertation goes further than the immediate technical findings. 

Practically, this publication demonstrates that artificial intelligence can be used in ways 

beyond theory in radiology, and can be a dependable co-pilot to a physician, especially in 

pediatric cases where timeliness and quality of diagnosis has critical implications. By offering 

the potential to decrease delays in diagnosis and increase consistency, deep learning systems 

will become acceptable supportive technology to help achieve better patient outcomes, and 

be even more valuable in high-burden or resource-constrained domains. Another important 

issue highlighted in this work is the necessity to rely on clinical professionals and AI systems 

to collaborate with one another. This requires the creation of interpretability techniques that 

extend beyond the fixed post-hoc heatmaps in to more interactive evidence, contextualized to 

clinical practice in a manner that will become embedded in clinical workflows.  
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On a methodological level, the results can also be relevant to the broader area of deep 

learning; we have shown that domain-specific construction (of activation functions and 

architectural modules) can result in improvements beyond just scaling up depth or parameters. 

It is important to note that this result is applicable not only to pneumonia classification, but 

also to other fields of medical imaging, where it can be seen that diagnosis can be 

characterized by comparable complexity and heterogeneity, and can be done with reduced 

computational expenditure to put into clinical practice.  

Future research must both enhance predictive power and consider the federated learning and 

privacy preserving training approaches to address the challenges to data sharing reported to 

date across institutions. These strategies would enable collaborative development of strong 

diagnostic models while maintaining patient confidentiality, thus enabling broader global use 

of AI-based tools. Finally, interdisciplinary collaboration between computer scientists, 

radiologists, ethicists, and health policy makers should also be prioritized. Only 

interdisciplinary collaboration can incorporate algorithmic innovation with clinical 

significance, regulatory environments, and ethical responsibility.  

To conclude, this dissertation highlights the opportunities and challenges of using deep 

learning systems for diagnosing pneumonia in children. The dissertation makes unambiguous 

technical contributions around activation functions, architectural improvements, and 

interpretability, however, it also notes that ethical considerations, practical considerations, 

and considerations for collaboration between human and AI systems will remain a top priority 

for use in clinical settings. Collectively, these reflections imply a future where AI is not 

thought of as a black-box substitute for human expertise but rather a transparent, reliable, and 

ethically aligned partner to help improve the health of children around the world.  
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Abstract: Pneumonia remains a significant cause of morbidity and mortality among pedi-
atric patients worldwide. Accurate and timely diagnosis is crucial for effective treatment
and improved patient outcomes. Traditionally, pneumonia diagnosis has relied on a com-
bination of clinical evaluation and radiologists’ interpretation of chest X-rays. However,
this process is time-consuming and prone to inconsistencies in diagnosis. The integration
of advanced technologies such as Convolutional Neural Networks (CNNs) into medical
diagnostics offers a potential to enhance the accuracy and efficiency. In this study, we con-
duct a comprehensive evaluation of various activation functions within CNNs for pediatric
pneumonia classification using a dataset of 5856 chest X-ray images. The novel Mish activa-
tion function was compared with Swish and ReLU, demonstrating superior performance in
terms of accuracy, precision, recall, and F1-score in all cases. Notably, InceptionResNetV2
combined with Mish activation function achieved the highest overall performance with
an accuracy of 97.61%. Although the dataset used may not fully represent the diversity
of real-world clinical cases, this research provides valuable insights into the influence of
activation functions on CNN performance in medical image analysis, laying a foundation
for future automated pneumonia diagnostic systems.

Keywords: convolutional neural network; pediatric pneumonia; Mish activation function;
optimization; deep learning

1. Introduction
Pneumonia remains a significant cause of morbidity and mortality among young

children beyond the neonatal period [1,2]. Each year, pneumonia affects approximately
150 million children, predominantly in developing countries [3,4]. Among these cases, an
estimated 700,000 to 1 million children under the age of five die annually from pneumonia,
making it one of the most significant public health challenges globally [5]. In developed
countries, although mortality rates are lower, pneumonia continues to be a primary cause of
hospitalization among children [6]. In contrast, the incidence of pneumonia is significantly
higher in developing countries with limited healthcare access [7]. The progression of
pneumonia relies on the host immunological response and is more frequent in vulnerable
individuals, such as children under the age of five.

Although viruses are still the primary cause of pneumonia, the introduction of con-
jugate vaccines targeting Streptococcus pneumoniae and Haemophilus influenzae has notably
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decreased cases of bacterial pneumonia. Currently, in immunized groups, especially in chil-
dren older than the neonatal period, Streptococcus pneumoniae and Mycoplasma pneumoniae
remain the most common bacterial pathogens linked to pneumonia. [8–10]. Pneumonia
is initiated by the pathogens mentioned, which elicit an immune response, leading to
inflammation in the lungs. As a result, the air spaces in the lower respiratory tract become
filled with white blood cells, fluid, and cellular debris. This accumulation diminishes lung
compliance and increases airway resistance, potentially obstructing smaller airways and
causing the collapse of distal air spaces. Consequently, this can lead to air trapping and
disrupted ventilation–perfusion relationships. In severe cases of pneumonia, significant
infection may cause necrosis of the bronchial or bronchiolar epithelium, as well as damage
to the pulmonary parenchyma [11]. Common symptoms of pneumonia in children include
cough, fever, rapid breathing, difficulty breathing, chest pain, fatigue, loss of appetite,
vomiting, and diarrhea [12,13]. Diagnosing pneumonia typically involves a combination of
physical examination, medical history, and laboratory tests [14]. Chest X-rays play a pivotal
role in the diagnosis of pneumonia, particularly in pediatric cases, where clinical symp-
toms can overlap with other respiratory illnesses. The primary function of an X-ray is to
provide a detailed view of the lungs, enabling clinicians to identify signs of infection, such
as lung consolidation, interstitial inflammation, or pleural effusion [15–17]. In pediatric
pneumonia, the typical findings on chest X-rays include areas of increased opacity, which
indicate the accumulation of fluid or pus in the alveoli due to the infectious process [18].
However, there are limitations to this diagnostic approach, as chest X-rays may not always
be definitive, especially in early-stage infections or in children with underlying health
conditions. Complementary diagnostic methods, such as lung ultrasound or laboratory
tests, can enhance diagnostic accuracy by providing additional information on the etiology
of the disease [14,19,20].

Deep learning has emerged as a powerful approach to the diagnosis of pneumo-
nia, especially through the automated classification of chest X-ray images [21]. Traditional
diagnostic methods, such as physical exams, medical history, and X-rays interpreted by clin-
icians, are time-consuming and subject to human error. Deep learning models, particularly
convolutional neural networks (CNNs), offer a significant improvement by automating
the process of interpreting X-ray images [22,23]. A fully automated deep-learning pipeline
for pneumonia diagnosis offers the advantage of rapidly processing and analyzing large
volumes of medical images, enabling efficient and accurate identification of the disease.
This efficiency is particularly beneficial in resource-limited settings, such as rural and low-
income regions. The automation of pneumonia classification using deep learning enables
more timely diagnosis, which is critical in preventing the progression of the disease to more
severe stages, especially in children [24]. Additionally, deep learning models reduce the
variability in diagnosis that may occur due to subjective interpretations by clinicians. This
standardization leads to more consistent results, helping to minimize diagnostic errors.
The models can also be fine-tuned to identify subtle patterns and early signs of pneumonia
which may not be easily detectable by the human eye [25,26]. Despite a high level of effec-
tiveness in using deep learning for medical imaging, the selection of the optimal activation
function remains a challenge that can significantly impact model performance. Firstly, there
has been a lack of research focusing on which activation function is optimal in certain tasks,
such as pediatric pneumonia diagnosis, especially considering the varying requirements
of different models and datasets. This research gap provides an opportunity to consider
novel activation functions, such as the Mish function, and evaluate their potential to im-
prove diagnostic accuracy and computational efficiency in pneumonia classification. By
addressing this research gap, our study seeks to improve the performance of deep learning
models, thereby facilitating more accurate, efficient, and accessible diagnostic solutions for
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pediatric pneumonia. To address the limitations of current pneumonia diagnostic methods,
this study investigates the application of CNNs, leveraging their capacity for processing
extensive medical image datasets and enabling rapid, accurate classification. The central
objective is to evaluate the impact of different activation functions on CNN performance,
with a specific focus on the novel Mish activation function. Specifically, we conduct a
comparative analysis of Mish against Swish and ReLU, two established activation functions
in CNN architectures. By determining the optimal activation function, this research aims
to improve both the computational efficiency and diagnostic accuracy of CNN models
for pneumonia classification. Furthermore, these findings are intended to inform future
research and the development of automated diagnostic systems, ultimately facilitating
more timely and reliable pediatric pneumonia diagnoses for healthcare providers. The key
contributions of this paper are as follows:

• This paper evaluated eight unique CNN architectures that employ Mish and Swish
activation functions, providing an innovative approach to pneumonia classification by
moving beyond the standard ReLU function.

• Through a comparative analysis of Mish, Swish, and ReLU, this study demonstrated
the superior performance of Mish and Swish in CNN models, establishing a basis for
further exploration of activation functions in medical imaging.

• The architectures are adaptable to varied clinical settings and hardware constraints,
while positioning Mish and Swish as promising alternatives to ReLU, encouraging
further research into non-standard activation functions to optimize CNNs in medi-
cal applications.

The paper is organized as follows: Section 2 examines some of the relevant studies.
Section 3 contains a detailed overview of the models and methodologies employed in this
research. Section 4 summarizes the findings of the research. Section 5 contains concluding
remarks and future works.

2. Related Works
Despite significant progress in automated pneumonia diagnosis using deep learning,

the scalability and robustness of these models in real-world healthcare applications remain
areas of ongoing investigation and development. Previous research has demonstrated
moderate success in optimizing deep learning methods for the detection of pneumonia
from medical images.

Kahwachi and Saed [27] evaluated the performance of six CNN architectures (VGG19,
InceptionV3, ResNet50, InceptionResNetV2, and DenseNet121) on a dataset of 2482 chest
CT images for COVID-19 classification. Their study explored the impact of different acti-
vation functions on model performance, finding that certain alternatives to ReLU could
enhance accuracy. Among the models tested, InceptionV3 and DenseNet121 demonstrated
superior performance when paired with non-ReLU activation functions. However, their
findings suggest that the optimal activation function may vary across different CNN ar-
chitectures. Walia et al. [28] developed a reliable pneumonia diagnostic model using a
Depthwise Convolutional Neural Network (DW-CNN) with Swish activation and transfer
learning (VGG16). The proposed model, consisting of 10 convolutional layers and three
dense layers, was trained on 5216 augmented radiograph images and tested on 624 images.
The model achieved a training accuracy of 98.5%, a testing accuracy of 79.8%, and a valida-
tion accuracy of 75%. Reis and Turk [29] designed COVID-DSNet, a novel deep learning
architecture to classify chest CT and X-ray images for COVID-19 detection. While ReLU
was the primary activation function used in the proposed model, Swish was explored in a
separate model. In chest CT, COVID-DSNet achieved 97.60% accuracy in triple classifica-
tion and 100% in binary classification. For chest X-rays, accuracy was 88.34% in quadruple
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classification and 99.45% in binary classification. Khan et al. [30] proposed a deep learning-
based method for classifying COVID-19 infections using chest X-rays. Three pre-trained
models (EfficientNetB1, NasNetMobile, and MobileNetV2) were fine-tuned and regularized
to improve performance. In EfficientNetB1, the Swish activation function was used, while
ReLU was employed in MobileNetV2. The EfficientNetB1 model accurately classified four
classes (COVID-19, viral pneumonia, lung opacity, and normal) with an accuracy of 96.13%.
Sriporn et al. [31] explored deep learning models (MobileNet, Densenet-121, Resnet-50) for
computer-aided diagnosis of lung lesions. The Densenet-121 model, combined with Mish
activation and Nadam optimization, achieved the best performance. On a held-out test set,
the model achieved 98.97% accuracy. They demonstrated the potential of deep learning
to assist radiologists in lung lesion detection. Mohammed et al. [32] determined that the
activation function in a CNN is crucial for medical image analysis. Appropriate non-linear
activation functions can substantially improve network performance, but there is no univer-
sally superior activation function; the choice depends on the particular task and network
architecture. Commonly employed activation functions include ReLU, Leaky ReLU, Swish,
and Mish. Other possibilities include SReLU, ISRLU, CELU, and various modifications of
sigmoid and tanh. Fahim et al. [33] utilized chest X-rays to assist in diagnosing COVID-19
during the pandemic, despite the challenge of limited labeled medical images. Using a
transfer learning approach with the EfficientNet architecture, the classifier incorporated
the Mish activation function, batch normalization, and dropout layers to effectively detect
COVID-19, pneumonia, and normal cases. The model, enhanced with semi-supervised
Noisy Student Training, achieved a high ROC (AUC) score of 98%.

Previous studies have shown that transfer learning models are beneficial for diagnos-
ing pediatric pneumonia, but there is scope for enhancing their computational efficiency
and accuracy. Early detection is crucial to minimize the effects of pediatric pneumonia.
This research highlights the significance of evaluating activation functions in convolutional
neural networks to improve pediatric pneumonia diagnosis from chest X-rays. By balanc-
ing computational complexity and model accuracy, we can achieve more effective disease
detection. This paper aims to inform future studies into the potential of Mish and Swish
to surpass the long-standing ReLU benchmark and foster further optimization efforts in
CNN architectures.

3. Materials and Methods
We evaluate activation functions for pneumonia classification through transfer learn-

ing using eight novel CNN architectures, including InceptionV3, InceptionResNetV2,
DenseNet201, and MobileNetV2, alongside the ReLU activation function for objective
comparison. Our approach consists of three main steps (Figure 1): (1) preprocessing input
data into two classes (pneumonia and healthy) using the open-source Chest X-ray Images
(Pneumonia) dataset [34]; (2) testing and comparing ReLU, Swish, and Mish activation
functions within each model; and (3) performing pneumonia classification and assessing
accuracy. This approach enables an objective evaluation of Mish and Swish activation
functions, demonstrating their potential to surpass ReLU and advance CNN design for
medical imaging.
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Figure 1. The study workflow for pneumonia classification based on transfer deep learning and
evaluated activation functions in the following three steps: (1) input data preprocessing with
healthy and pneumonia classes; (2) evaluation of deep learning models with activation functions
(ReLU, Swish, Mish); and (3) pneumonia classification and accuracy assessment of evaluated deep
learning approaches.

3.1. Data Preprocessing and Experimental Setup

For our experiment, we utilized the open-access Chest X-ray Images (Pneumonia)
repository [34], which contains X-ray images collected from pediatric patients aged one
to five years at Guangzhou Women and Children’s Medical Center, Guangzhou. These
images were captured as part of routine clinical care and are divided into two categories,
pneumonia and healthy, with a total of 5856 images [34]. Samples of the images used are
shown in Figure 2. To create the training and validation datasets, we applied a stratified
random split in an 80:20 ratio, ensuring that the class distribution was maintained in both
subsets. The distribution of the dataset is shown in Table 1. To prepare the data for our
deep learning model, we resized all images to 224 × 224 pixels and employed a set of
data augmentation techniques during preprocessing. The augmentation techniques, which
include rotation, shifting, zooming, and horizontal flipping, were applied following rec-
ommendations from previous studies in medical image analysis [35–37]. These techniques
ensure that the model learns to generalize well by artificially expanding the training set
and introducing variability that the model may encounter in real-world clinical settings.
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Table 1. Distribution of the dataset.

Category Total Images Training Images Validation Images

Pneumonia 4273 3418 855

Healthy 1583 1266 317

Total 5856 4684 1172

For developing and training the CNN models, we used the Keras-GPU [38] and
TensorFlow-GPU [39] platforms in Python. We trained these models on a Google Colab
platform, which provided powerful NVIDIA Tesla K80 GPUs with 12 GB of memory. Each
model was trained for 20 epochs using a batch size of 32. We used the Adam optimization
algorithm to adjust the model’s parameters during training. The learning rate, which
determines how quickly the model adjusts, was automatically calculated and changed
as needed.

3.2. Evaluation of Activation Functions

We examined the importance of selecting activation functions as they introduce non-
linearity into neural networks, allowing models to learn complex patterns and relationships
in data [40,41]. Without activation functions, neural networks would behave like linear
models, limiting their ability to handle complex medical diagnoses. In pediatric pneumonia,
where symptoms can vary significantly across patients, a model needs to capture intricate
patterns in imaging data and clinical features for accurate classification [42]. Additionally,
activation functions enhance the network’s capacity to generalize and distinguish between
normal and abnormal lung conditions [43,44]. The convolutional layers extract essential
features from chest X-rays, and the choice of activation function greatly impacts how these
features are transformed and propagated through the network [45]. By comparing different
activation functions, we sought to identify the best one for optimizing diagnostic accuracy
while ensuring efficient training. Moreover, our experiment aims to enhance the accuracy
and robustness of pneumonia detection systems, ultimately supporting earlier interventions
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and improved patient outcomes. In this study, we focus on evaluating three activation
functions: ReLU, Swish, and Mish. Each of these functions has distinct characteristics that
influence how a neural network processes data, particularly in terms of learning complex
patterns and improving model performance in pediatric pneumonia recognition.

ReLU is one of the most widely used activation functions in deep learning, primarily
due to its simplicity and computational efficiency. It is defined according to Formula (1):

ReLU(x) = max(0, x) (1)

It introduces non-linearity and helps prevent the vanishing gradient problem, which
can occur in deeper networks. The key advantage of ReLU is its computational speed and
ease of implementation, making it well-suited for large-scale image recognition tasks [46].
In our study, ReLU serves as the baseline activation function due to its widespread use
in CNNs.

Swish is an activation function which combines a smooth curve similar to the sigmoid
function with a non-linear transformation that retains small negative values, unlike ReLU.
It is defined according to Formula (2):

Swish(x) =x× σ(x) =
x

1 + e−x (2)

Swish, which is introduced in [47], has been shown to outperform ReLU in certain
tasks by enabling more complex pattern recognition. In the context of pediatric pneumonia
detection, Swish can help the model capture subtle variations in X-ray images, such as
slight differences in lung texture that may indicate early stages of pneumonia [28].

Mish is an advanced activation function that has gained attention for its ability to
outperform both ReLU and Swish in various computer vision tasks [48,49]. It is defined
according to Formula (3):

Mish(x) = x× tanh(softplus(x))= x× tanh(ln(1 + ex)) (3)

Similar to Swish, Mish which is introduced in [48], is a smooth, non-monotonic
activation function that facilitates improved information flow and gradient propagation
throughout the network. One of Mish’s primary advantages is its capacity for enhanced
generalization and more stable training dynamics, especially in deeper networks.

This makes it a promising choice for complex medical diagnoses like pediatric pneu-
monia, where distinguishing between normal and abnormal lung conditions requires
capturing minute details in chest X-ray images.

3.3. Model Architecture for Pneumonia Classification

While numerous studies have investigated CNN-based approaches for pneumonia
classification, this paper introduces eight novel architectures leveraging the under-explored
Mish and Swish activation functions. The purpose of this design is to objectively assess
the efficacy of these non-standard activation functions compared to the widely used ReLU,
with the goal of improving general CNN performance. The adaptability of each proposed
network to various real-world scenarios enables further fine-tuning in collaboration with
medical experts, accommodating specific clinical requirements and hardware constraints.

The model architecture is constructed through a transfer learning approach, utilizing
established CNN backbones which are pretrained on ImageNet dataset—InceptionV3,
InceptionResNetV2, DenseNet201, and MobileNetV2. To preserve the generalizable feature
extraction capabilities of these pre-trained models, the lower layers are frozen, while the
final layers are fine-tuned to specialize in extracting pneumonia-specific features. For
effective classification, a custom classification head is introduced. This head includes a
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convolutional layer that incorporates the activation function under evaluation—ReLU,
Swish, or Mish—enabling a detailed and controlled comparison of the activation functions’
impact on model performance. A global max pooling layer follows, which reduces the
spatial dimensions by extracting the most salient features, contributing to enhanced ro-
bustness. Finally, a fully connected dense layer generates binary predictions, effectively
distinguishing between pneumonia and healthy cases. Pseudocode for the methodology
used is shown in Algorithm 1.

Algorithm 1: Training and Evaluation of CNN for Pneumonia Recognition

Input: Training dataset directory train_dir, Validation dataset directory validation_dir,
Pretrained base model CNN_base_model, Batch size batch_size, Number of epochs epochs.
Output: Trained CNN model, Evaluation metrics (Accuracy,
Precision, Recall, F1-score), Confusion matrix and classification report.

1. begin
2. Step 1: Initialize Training Configuration
3. Define callbacks: lr_reducer (reduce learning rate on plateau), csv_logger (log

training details to CSV);
4. Calculate dataset properties using get_nb_files(directory): nb_train_samples

← total files in train_dir;
5. nb_val_samples← total files in validation_dir;
6. Define activation functions: Swish(x) = x · sigmoid(x), Mish(x) = x ·

tanh(softplus(x));
7. Step 2: Configure Data Augmentation;
8. Initialize ImageDataGenerator for training with: rotation, zoom,

width/height shifts, horizontal flips;
9. Load data generators: train_generator← training images resized to

(224 × 224);
10. validation_generator← validation images resized to (224 × 224);
11. Step 3: Define and Compile Model;
12. Load base model CNN_base_model (pre-trained on ImageNet) with

include_top=False;
13. Add custom layers: Convolutional layer with Swish/Mish activation,

GlobalMaxPooling layer, Fully connected layer with sigmoid activation;
14. Compile model with: Optimizer = Adam, Loss = Binary Crossentropy, Metrics

= Accuracy, AUC;
15. Step 4: Train the Model;
16. Train using model.fit(): steps_per_epoch← nb_train_samples/batch_size;
17. validation_steps← nb_val_samples/batch_size;
18. Use callbacks: lr_reducer, csv_logger;
19. Step 5: Evaluate the Model;
20. Generate predictions using validation_generator;
21. Compute confusion matrix and classification report;
22. Normalize confusion matrix values;
23. Step 6: Visualize Results;
24. Plot heatmap of confusion matrix using Seaborn;
25. Annotate heatmap with class labels (healthy, pneumonia);
26. Step 7: Save the Model;
27. Save trained model to disk as algorithm cnn.h5;
28. end
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3.4. Pediatric Pneumonia Accuracy Assessment

To evaluate the accuracy of deep learning models for pneumonia recognition in chest X-
ray images, the following metrics were employed: precision, recall, F1-score, and accuracy,
according to Formulas (4)–(7). These metrics were calculated using the values from the
confusion matrix, providing a comprehensive assessment of the model’s performance.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
, (5)

F1-score = 2× Precision× Recall
Precision+Recall

, (6)

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

For pneumonia recognition using chest X-ray images, true negatives are cases where
pneumonia is correctly identified. These images often exhibit characteristic patterns such as
increased density in the lungs, consolidation, or pleural effusion. False positives are cases
where pneumonia is present but not detected. False negatives are cases where pneumonia is
incorrectly diagnosed, often due to other conditions or artifacts in the image. True positives
are cases where there is no pneumonia present and it is correctly identified as such.

4. Results and Discussion
The accuracy assessment results of pneumonia diagnosis based on four transfer learn-

ing models—InceptionV3, InceptionResNetV2, MobileNetV2, and DenseNet201—each
evaluated with three activation functions—ReLU, Swish, and Mish—are presented in
Table 2. We conducted the experiment using 5856 images to identify pneumonia.
Each model’s performance was measured by accuracy, F1-score, precision, and recall.
DenseNet201 with the Mish activation function achieved the best performance, with an ac-
curacy of 97.53%. Among the activation functions, Mish consistently delivered the highest
scores across all metrics for each model, followed closely by Swish, with ReLU generally
lagging behind. As demonstrated by Table 2, InceptionV3 achieved 96.33% accuracy with
Mish, compared to 91.21% with Swish and 86.95% with ReLU. Similarly, InceptionResNetV2
reached 97.61% accuracy with Mish, while Swish and ReLU yielded 97.44% and 94.37%,
respectively. Mish also outperformed other activation functions in MobileNetV2, achieving
92.92% accuracy, compared to 90.53% with Swish and 88.74% with ReLU. DenseNet201
remained the top-performing model, achieving 97.53% accuracy with Mish, compared to
97.27% with Swish and 96.76% with ReLU. Mish consistently provided superior accuracy,
F1-scores, precision, and recall, making it the most effective activation function, while
Swish remained competitive and ReLU performed the worst across all models.

Some research studies suggest that model performance depends heavily on the choice
of activation function [45,50–52], but they do not universally state that Mish is the best
activation function for several reasons. Firstly, the effectiveness of an activation function is
highly task-specific [52,53]. In this study, we introduced a novel approach by focusing on the
application of the Mish activation function in pediatric pneumonia detection. Mish’s unique
properties, including smooth gradient flow and self-regularization, make it particularly
suited for medical image classification tasks requiring deep and complex architectures.
Mish has demonstrated superior performance in certain tasks, such as medical image
classification, particularly in deep models like DenseNet201 for pneumonia recognition.
However, its performance may not generalize across all tasks, datasets, or architectures.
For example, simpler or shallow neural networks may not require the advanced properties
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of Mish, and activation functions like ReLU or Swish may perform sufficiently well while
being computationally more efficient [48]. Secondly, the architecture of the model plays
a critical role in determining how well an activation function works [47]. Some models,
especially those with complex layers and deep architectures like Inception, might benefit
more from the smooth gradient properties of Mish, while other architectures may not
see significant gains. Additionally, Mish is computationally more expensive compared
to simpler functions like ReLU [54], which can be a critical factor in scenarios where
computational resources are limited, or inference speed is a priority. In this study, we
demonstrate that Mish’s smooth gradient properties enhance the performance of deep
architectures like InceptionResNetV2, achieving the highest accuracy. ReLU and Swish
have been extensively studied and tested across a wide range of domains, including natural
language processing, computer vision, and time-series analysis, providing robust empirical
evidence of their reliability [28,54,55]. Moreover, the Swish activation function might offer
slightly lower accuracy than Mish in some contexts [48,49], but its lower computational
complexity and broader applicability make it a competitive choice.

Table 2. Accuracy assessment of CNNs with evaluated activation functions for pneumonia classification.

Activation Function Transfer Deep Learning Model Accuracy F1-Score Precision Recall

ReLU

InceptionV3 0.8695 0.8543 0.8881 0.8695
InceptionResNetV2 0.9437 0.9415 0.9473 0.9437

MobileNetV2 0.8874 0.8770 0.9007 0.8874
DenseNet201 0.9676 0.9673 0.9675 0.9676

Swish

InceptionV3 0.9121 0.9065 0.9197 0.9121
InceptionResNetV2 0.9744 0.9743 0.9743 0.9744

MobileNetV2 0.9053 0.9087 0.9247 0.9053
DenseNet201 0.9727 0.9728 0.9730 0.9727

Mish

InceptionV3 0.9633 0.9630 0.9632 0.9633
InceptionResNetV2 0.9761 0.9760 0.9760 0.9761

MobileNetV2 0.9292 0.9259 0.9336 0.9292
DenseNet201 0.9753 0.9752 0.9752 0.9753

The highest assessment metrics per CNN with evaluated activation functions are in bold.

Although the dataset used was imbalanced, we utilized the F1-score as a robust
indicator of test performance, given its harmonic mean of precision and recall. The F1-score
results, which support our earlier findings, are detailed in Table 3. InceptionV3 showed
the most improvement with the Mish activation function, achieving F1-scores of 93.03%
for healthy and 97.51% for pneumonia cases. Swish also yielded strong performance,
with F1-scores of 80.82% for healthy and 94.30% for pneumonia cases, while ReLU lagged
behind, scoring 68.32% for healthy and 91.78% for pneumonia cases. InceptionResNetV2
demonstrated robust performance across all activation functions. The Mish activation
function produced the highest F1-scores of 95.53% for healthy and 98.37% for pneumonia
cases, closely followed by Swish with 95.19% for healthy and 98.26% for pneumonia cases.
ReLU performed slightly worse, with F1-scores of 88.42% for healthy and 96.28% for
pneumonia cases. MobileNetV2 showed more variation between activation functions.
Mish again outperformed the other functions, with F1-scores of 85.15% for healthy and
95.35% for pneumonia cases. Swish yielded moderate performance with 84.77% for healthy
and 93.13% for pneumonia cases, while ReLU exhibited the lowest scores, particularly for
healthy cases with 73.91%, although it performed relatively well for pneumonia cases with
92.82%. DenseNet201, the top-performing model, achieved consistently high F1-scores
across all activation functions. Mish resulted in the highest scores, with 95.42% for healthy
and 98.31% for pneumonia cases. Swish followed closely with F1-scores of 95.02% for
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healthy and 98.12% for pneumonia cases, while ReLU, though effective, produced slightly
lower scores of 93.85% for healthy and 97.80% for pneumonia cases.

Table 3. The F1-score values for pneumonia classification per CNN with evaluated activation function.

Activation Function Transfer Deep Learning Model Healthy Pneumonia

ReLU

InceptionV3 0.6832 0.9178
InceptionResNetV2 0.8842 0.9628

MobileNetV2 0.7391 0.9282
DenseNet201 0.9385 0.9780

Swish

InceptionV3 0.8082 0.9430
InceptionResNetV2 0.9519 0.9826

MobileNetV2 0.8477 0.9313
DenseNet201 0.9502 0.9812

Mish

InceptionV3 0.9303 0.9751
InceptionResNetV2 0.9553 0.9837

MobileNetV2 0.8515 0.9535
DenseNet201 0.9542 0.9831

The highest F1-scores for Pneumonia/Healthy class are in bold.

Overall, the results demonstrate that the choice of activation function significantly
impacts the performance of each model [50,51]. Among the evaluated activation functions,
Mish consistently delivered the best outcomes across all models, surpassing both Swish
and ReLU in terms of accuracy, F1-score, precision, and recall. Mish outperforms ReLU
and Swish likely due to its unique mathematical properties that balance gradient smooth-
ness and information retention. While both Swish and Mish exhibit non-monotonicity
and smooth gradients, Mish’s unbounded positive range facilitates more effective infor-
mation propagation during forward and backward passes, particularly for larger input
magnitudes. Furthermore, Mish’s sharper curvature near zero introduces implicit regu-
larization, promoting improved feature extraction and enhanced generalization in deep
neural networks [48,56]. This makes Mish particularly well-suited for deep learning tasks
like pneumonia detection, where accurately capturing subtle differences in medical images
is crucial. While Swish also performed well, consistently outperforming ReLU in every
model, it fell slightly short of Mish in terms of accuracy and F1-scores. ReLU, though
simple and efficient, consistently underperformed compared to the other activation func-
tions, particularly in models requiring deep feature extraction, such as DenseNet201 and
InceptionResNetV2. Our study builds upon advancements in deep learning and transfer
learning, exploring the efficacy of pretrained models on general-purpose datasets such as
ImageNet for medical image analysis. Similarly to the framework of real-world feature
transfer learning discussed in research by Jaganathan et al. [57], which achieved an accu-
racy of 93.6% using DenseNet161, we employ advanced backbone architectures, including
InceptionResNetV2 and DenseNet201, to enhance pneumonia classification performance.
Furthermore, we incorporate insights from the modified LeNet model, which reported
96% accuracy through a revised ReLU activation function and batch normalization [58].
By integrating novel activation functions, notably Mish, our proposed approach achieves
a superior accuracy of 97.61%, significantly surpassing benchmarks established by both
DenseNet161 and the modified LeNet. While previous research has emphasized techniques
such as grayscale-to-RGB image conversion, batch normalization, and mathematical formal-
ization, our research prioritizes activation function optimization to enhance computational
efficiency and robustness for deployment in real-world clinical settings.

The confusion matrix presented in Figure 3 provides a detailed analysis of the clas-
sification performance for each model, illustrating the absolute and relative numbers of
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correctly and incorrectly classified instances. DenseNet201 consistently outperformed the
other models, demonstrating high accuracy and precision in pneumonia diagnosis. Incep-
tionResNetV2 also exhibited strong performance with relatively low false-positive and
false-negative rates. Conversely, MobileNetV2 struggled with false positives, particularly
in misclassifying healthy cases. InceptionV3 demonstrated moderate performance, with
average levels of both false positives and false negatives.
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When deployed in a cloud environment, the proposed approach simplifies the imple-
mentation of CNN models by eliminating the need for local database storage, significantly
reducing storage demands. This study presents eight innovative CNN architectures that
leverage non-standard activation functions to enhance the effectiveness of automated
pneumonia classification. These architectures are designed for effortless integration into
hospital information systems and can be customized to address the specific requirements
of various healthcare institutions. By advancing these methodologies, the study promotes
the development of reliable deep learning models for pediatric pneumonia recognition,
supporting enhanced diagnostic accuracy and timeliness.

In practical applications and clinical settings, this approach presents significant advan-
tages. The cloud-based framework facilitates remote access to diagnostic models, ensuring
their availability to healthcare providers, including those in low-resource environments.
The flexibility and adaptability of these CNN models enable seamless integration into di-
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verse clinical workflows, supporting real-time, data-driven decision-making. By reducing
diagnostic inconsistencies and enabling the earlier detection of pneumonia, these models
contribute to enhanced healthcare delivery, streamlining diagnostic processes and opti-
mizing patient care. Ultimately, this solution holds the potential to revolutionize pediatric
pneumonia management by improving clinical outcomes through faster, more accurate,
and widely accessible diagnostic support. While this study demonstrates promising re-
sults in the automated diagnosis of pediatric pneumonia using CNNs, several limitations
warrant consideration and outline opportunities for future research. A key limitation of
this study lies in the dataset used. Although considerable in size, it lacks the diversity
and scale necessary to adequately represent the variability observed in real-world clinical
contexts. Incorporating a larger and more diverse dataset, including images from a wider
range of demographic groups, geographic locations, and clinical settings, is crucial for
improving the model’s robustness and generalizability. Additionally, Manohar et al. [59]
highlight the importance of real-time applications presenting the LSTM-ANN-RSA model
which explores adaptive learning mechanisms for real-time data assimilation, while our
study focuses on enhancing computational efficiency to enable real-time deployment of
diagnostic tools in healthcare environments. The computational complexity of the proposed
methods, including training and inference execution times, was not explicitly addressed.
These metrics are essential for assessing the practicality of deploying the model in real-time
clinical environments.

Future efforts will involve benchmarking the computational requirements and op-
timizing the model to reduce resource demands while maintaining diagnostic accuracy.
Additionally, future research will focus on using methods from explainable AI to analyze
the features learned by the model with Mish activation function. This will include ex-
amining the lower, unfrozen layers during transfer learning to gain deeper insights into
how Mish influences feature extraction and representation. Finally, future research will
prioritize real-life testing and integration into clinical workflows to evaluate the model’s
practical utility and scalability, ensuring its effectiveness in diverse healthcare settings.

5. Conclusions and Future Work
In this study, we demonstrated how CNNs, particularly those utilizing the novel

Mish activation function, can significantly enhance pediatric pneumonia classification. By
leveraging innovative activation functions, we improved diagnostic accuracy, reduced
variability in interpretation, and supported clinical decision-making. Our evaluation of
pre-trained CNN architectures, such as InceptionResNetV2, revealed that the Mish acti-
vation function outperformed traditional functions like ReLU and Swish, achieving an
accuracy of 97.61%. Mish’s distinctive properties, such as its ability to maintain smoother
gradient flow, self-regularization effects, and non-monotonic behavior, played a pivotal
role in enhancing model stability and improving generalization to unseen data. Addition-
ally, Mish’s unbounded positive range and sharper curvature near zero allowed for better
information retention and feature extraction, particularly in complex datasets like medical
images. These attributes collectively reduced the risk of overfitting and contributed to
superior performance, establishing Mish as a highly effective activation function for medi-
cal imaging tasks. Future research on pediatric pneumonia using deep learning models
should focus on multiple key aspects to improve diagnostic precision and efficiency. To
optimize model performance, efforts should aim to expand the dataset and ensure a more
equitable distribution of healthy and pneumonia examples. Additionally, comprehensive
assessments of activation functions, such as Mish, across varied datasets are vital to deter-
mine the most effective functions for pneumonia detection in chest X-rays. Furthermore,
enhancing computational efficiency is essential for facilitating real-time applications in clin-
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ical environments. Another important direction for future research involves investigating
the interactions between activation functions and various model architectures. A deeper
understanding of these dynamics could facilitate the optimization of neural networks
specifically designed for pediatric pneumonia detection, potentially leading to more robust
and reliable models as well as improved diagnostic performance. By addressing these
priorities, future research can accelerate the development of automated diagnostic tools,
equipping healthcare providers with reliable and efficient systems for early and accurate
pneumonia diagnosis.
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Abstract: Pediatric pneumonia remains a significant global health issue, particularly in
low- and middle-income countries, where it contributes substantially to mortality in chil-
dren under five. This study introduces a deep learning model for pediatric pneumonia
diagnosis from chest X-rays that surpasses the performance of state-of-the-art methods
reported in the recent literature. Using a DenseNet201 architecture with a Mish activa-
tion function and multi-scale convolutions, the model was trained on a dataset of 5856
chest X-ray images, achieving high performance: 0.9642 accuracy, 0.9580 precision, 0.9506
sensitivity, 0.9542 F1 score, and 0.9507 specificity. These results demonstrate a significant
advancement in diagnostic precision and efficiency within this domain. By achieving the
highest accuracy and F1 score compared to other recent work using the same dataset, our
approach offers a tangible improvement for resource-constrained environments where
access to specialists and sophisticated equipment is limited. While the need for high-quality
datasets and adequate computational resources remains a general consideration for deep
learning applications, our model’s demonstrably superior performance establishes a new
benchmark and offers the delivery of more timely and precise diagnoses, with the potential
to significantly enhance patient outcomes.

Keywords: convolutional neural network; deep learning; pediatric pneumonia; Mish
activation function; multi-scale convolution

1. Introduction
Pediatric pneumonia constitutes a significant global health challenge, with a dispro-

portionate impact on low- and middle-income countries (LMICs) [1], where it persists
as a primary cause of mortality in children under five years of age [2]. According to the
World Health Organization (WHO), pneumonia is responsible for approximately 14% of all
fatalities in children under five years old; this translates to an estimated 740,000 deaths each
year [3]. Globally, the disease accounts for 10–20 million hospitalizations and an annual
incidence of 150–156 million cases, with over 80% of pneumonia-related deaths occurring
in LMICs. Regions such as South Asia and West and Central Africa bear the highest burden,
with pneumonia affecting approximately 1 in 71 children annually [4,5]. This infectious
disease, characterized by inflammation of the pulmonary alveoli in one or both lungs,
presents clinically in children with a spectrum of signs and symptoms, including cough,
fever, dyspnea, and chest pain [6]. In severe presentations, the disease can progress to

Algorithms 2025, 18, 98 https://doi.org/10.3390/a18020098

https://doi.org/10.3390/a18020098
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7151-7862
https://orcid.org/0000-0002-7469-6018
https://doi.org/10.3390/a18020098
https://www.mdpi.com/article/10.3390/a18020098?type=check_update&version=1


Algorithms 2025, 18, 98 2 of 17

hypoxemia (decreased arterial oxygen saturation) and potentially life-threatening com-
plications such as pleural effusion and respiratory failure [7]. The etiology of pediatric
pneumonia is diverse, encompassing bacterial, viral, and fungal pathogens. While the clini-
cal presentation may exhibit variability based on the specific causative agent, the disease
typically manifests with respiratory distress and systemic symptoms, necessitating timely
diagnosis and appropriate therapeutic intervention [8,9]. In high-income countries, the
mortality rates are significantly lower due to better access to vaccines, diagnostic tools, and
antibiotics. However, pneumonia continues to impose a significant burden on healthcare
systems worldwide, accounting for millions of outpatient visits and hospital admissions
annually, as well as substantial healthcare costs. The financial burden of prolonged care
is particularly severe in resource-constrained areas, where limited access to affordable
healthcare exacerbates the issue [10,11]. Addressing this challenge requires not only im-
provements in prevention and treatment but also innovative diagnostic methods to ensure
early and accurate detection [12].

Deep learning has become a pivotal tool in the diagnosis of pediatric pneumonia,
offering advanced capabilities for analyzing large datasets of medical images. These algo-
rithms can identify subtle patterns and anomalies that may elude human interpretation,
providing consistent and objective diagnostic outcomes [13]. By reducing diagnostic errors
and operating with greater efficiency than traditional methods, deep learning addresses
key limitations of conventional approaches. Specifically, conventional methods often rely
on manual interpretation, which can be prone to human error and variability, particularly
when identifying subtle or atypical patterns in medical images. Deep learning overcomes
these challenges by leveraging automated feature extraction and pattern recognition, en-
abling consistent and reproducible results. Additionally, traditional diagnostic methods can
struggle with large volumes of data or complex datasets, whereas deep learning excels at
processing and analyzing such data efficiently [14]. Its utility is particularly pronounced in
resource-constrained settings, where access to skilled radiologists and advanced diagnostic
facilities is limited, thereby promoting equitable healthcare delivery and enabling timely,
accurate diagnoses in underserved populations [15,16]. CNNs, a specialized architecture
within deep learning, have demonstrated remarkable accuracy in medical imaging. They
excel at extracting and analyzing both local and global features from radiographic images,
which are essential for identifying pathologies such as pneumonia [17]. In pediatric applica-
tions, deep learning models trained on extensive radiographic datasets can reliably detect
features indicative of pneumonia, including those associated with early-stage or atypical
presentations. This capability not only enhances diagnostic efficiency; however, it also
serves as a valuable supplementary tool for clinicians—minimizing the risk of missed diag-
noses and contributing to improved patient outcomes [18]. Although these advancements
are significant, they still require ongoing refinement and validation in clinical settings
because the stakes in medical diagnostics are exceptionally high.

Despite the considerable advancements in deep learning applications within the realm
of medical imaging, existing models exhibit numerous limitations. Many of the leading
models—such as Inception, ResNet, and VGG—are computationally demanding, necessi-
tating extensive memory and processing capabilities [19,20]. These prerequisites render
them difficult to implement on edge devices or in settings with limited resources [19].
Furthermore, these models frequently possess a vast number of parameters, which height-
ens the risk of overfitting when trained on small or imbalanced datasets; this scenario is
particularly prevalent in medical imaging [21]. Another significant challenge pertains to
the interpretability of deep learning models. Although these algorithms can achieve high
accuracy, their opaqueness complicates clinicians’ ability to trust and effectively integrate
them into their practice [22,23]. Addressing these limitations is crucial for facilitating the



Algorithms 2025, 18, 98 3 of 17

widespread adoption of deep learning techniques in pediatric pneumonia diagnostics. This
study intends to tackle the deficiencies of current deep learning models by developing an
enhanced DenseNet201-based model for pediatric pneumonia recognition.

The primary aim of this study is to optimize the architecture of a deep-learning model
for pediatric pneumonia diagnosis. This is accomplished by leveraging a pretrained Dense-
Net201 model and introducing multi-scale convolutional layers. These layers facilitate the
model in capturing features at varying resolutions, thus enhancing its ability to identify
pneumonia across diverse radiographic presentations. The model was evaluated using a
publicly available dataset, which ensures transparency and reproducibility of the results.
Furthermore, the Mish activation function was incorporated to provide smoother gradient
propagation and improved convergence compared to traditional activation functions, such
as ReLU. An essential aspect of the model’s design is its parameter efficiency, achieved by
minimizing the number of parameters in comparison to other pre-trained models. This
design choice makes the model particularly suitable for deployment in resource-constrained
environments where computational resources may be limited. However, by utilizing
transfer learning and a publicly accessible dataset, we demonstrated the model’s robustness
and diagnostic accuracy across a variety of imaging scenarios. Although challenges remain,
this approach significantly contributes to the field of pediatric pneumonia diagnosis.

The primary contributions of this study are as follows:

• This study leveraged a pretrained DenseNet201 model to develop a novel architecture
optimized for pediatric pneumonia diagnosis. By introducing multi-scale convolu-
tional layers, the model effectively captures features at varying resolutions, enhancing
its diagnostic accuracy across diverse radiographic presentations.

• The incorporation of the Mish activation function provides smoother gradient propa-
gation and improved convergence compared to traditional activation functions, such
as ReLU, further enhancing the model’s stability and generalization capabilities.

• An essential focus was placed on parameter efficiency. The model achieves a signifi-
cantly lower parameter count compared to other pretrained architectures, ensuring
computational efficiency and making it ideal for deployment in resource-constrained
settings where advanced hardware is limited.

• By employing transfer learning and a publicly accessible dataset, the study demon-
strates the adaptability of the model for diverse imaging scenarios, addressing the diag-
nostic challenges faced in both high-resource and low-resource clinical environments.

This paper is structured as follows: Section 2 reviews the relevant literature on pedi-
atric pneumonia diagnosis using deep learning techniques. Section 3 provides a detailed
description of the proposed model and methodologies. Section 4 presents the experimental
results, including a comparative analysis of model performance. Finally, Section 5 outlines
the conclusions and directions for future research.

2. Related Works
Although deep learning has made significant progress in advancing automated pneu-

monia diagnosis, achieving higher performance and ensuring the scalability and robustness
of these models in real-world clinical settings remain ongoing challenges. Previous studies
have demonstrated moderate success in refining deep learning techniques for detecting
pneumonia from medical imaging data.

Ha Pham and Tran [24] evaluated the performance of an ensemble model combining
three CNN architectures (InceptionResNetV2, DenseNet201, and VGG16) for binary pneu-
monia classification using 5856 chest X-ray images. Compared to single CNN models, the
ensemble demonstrated superior performance, achieving an accuracy of nearly 0.95 and
improving the average F1 score by 3%. Additionally, the study underscores the potential
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of ensemble methods to outperform individual architectures in medical image analysis
tasks. Kahwachi and Saed [25] emphasized the importance of rapid COVID-19 diagnosis
due to its widespread social and economic impact and the limitations of molecular tests.
Their study utilized six CNN architectures (VGG19, InceptionV3, ResNet50, InceptionRes-
NetV2, and DenseNet121) to classify chest CT images as COVID-19 or non-COVID-19,
comparing the effects of various activation functions. They found that InceptionV3 and
DenseNet121 performed best when paired with non-ReLU activation functions, highlight-
ing their potential to improve diagnostic accuracy in resource-limited areas. Lujan-Garcia
et al. [26] highlighted pneumonia as a leading cause of mortality in children under five
and emphasized the importance of chest X-ray imaging for its diagnosis. In research, they
used transfer learning with the ImageNet pre-trained Xception Network to classify chest
X-rays, distinguishing between 3883 pneumonia cases and 1349 normal images. The model
demonstrated competitive performance compared to state-of-the-art methods, achieving
a precision of 0.84, a recall of 0.99, an F1 score of 0.91, and an AUC of 0.97. Jain et al. [27]
highlighted pneumonia as a leading cause of death among children, with 880,000 deaths
reported in 2016, particularly in South Asia and Sub-Saharan Africa. Using CNNs, the
researchers classified chest X-ray images to classify pneumonia. They experimented with
different parameters, hyperparameters, and the number of convolutional layers within the
CNN architecture. Two custom CNN models achieved validation accuracies of 0.8526 and
0.9231, while pre-trained models like VGG16, VGG19, ResNet50, and InceptionV3 attained
accuracies of 0.8728, 0.8846, 0.7756, and 0.7099, respectively. Kaya [28] emphasized the
importance of rapid pediatric pneumonia detection due to its seasonal association and po-
tentially fatal outcomes. The study utilized deep tuning transfer learning of state-of-the-art
CNN models, specifically DenseNet121, achieving an accuracy of 0.9503 and an F1 score of
0.9603 on a dataset of 5856 chest X-ray images. The results demonstrated the effectiveness
of the approach for accurate and timely pneumonia detection in pediatric cases. Wang
et al. [29] proposed a DenseNet-based method with a Squeeze and Excitation (SE) block
and max-pooling to enhance pneumonia classification by better focusing on lesion regions.
They selected PReLU as the activation function to prevent neuron death during training.
The model outperformed DenseNet, achieving 0.928 accuracy, 0.926 precision, 0.962 recall,
and 0.943 F1 score, with improvements in all metrics.

Previous studies on pediatric pneumonia recognition using CNNs face limitations,
including inadequate feature extraction for detecting subtle patterns in chest X-rays. For
example, while ensemble models combining architectures like DenseNet201, Inception-
ResNetV2, and VGG16 demonstrated superior performance with improved F1 scores [24],
their computational complexity makes them less practical for resource-constrained environ-
ments. Similarly, pre-trained CNNs such as VGG16, ResNet50, and InceptionV3 achieved
validation accuracies between 0.7099 and 0.9231 in pediatric pneumonia recognition, but
their reliance on extensive fine-tuning and higher resource requirements may limit their
scalability in real-world applications [27]. Furthermore, despite promising results from
DenseNet-based approaches incorporating SE blocks and custom activation functions [29],
these methods often involve added architectural complexity, making deployment in clinical
workflows challenging. Notably, many of these studies, including those by Kaya [28],
Lujan-Garcia et al. [26], and Ha Pham and Tran [24], used the same publicly available Chest
X-ray Images dataset as our study, highlighting dataset-specific limitations such as potential
biases, variability in image quality, and limited demographic diversity. To tackle these
deficiencies, this study introduces an innovative CNN model grounded in the DenseNet
architecture. It integrates multi-scale convolution and the Mish activation function to im-
prove feature detection, as well as gradient flow. The model achieves significant accuracy,
sensitivity, and specificity; thus, it demonstrates a well-rounded performance in pneumonia
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recognition, thereby avoiding misdiagnoses. This advancement effectively reduces false
negatives, which can lead to overlooked diagnoses, and minimizes false positives, thus
preventing unnecessary treatments. Although the model enhances scalability, robustness,
and clinical applicability, it ultimately serves as a reliable tool to aid healthcare professionals
in diagnosing pediatric pneumonia, particularly in low-resource settings.

3. Materials and Methods
We introduce a novel approach that leverages the DenseNet architecture, augmented

with the Mish activation function and multi-scale convolutions (see Supplementary Materials).
Through transfer learning, this method aims to enhance the recognition of pediatric pneu-
monia. The proposed methodology comprises three primary stages, as depicted in Figure 1:
(1) preprocessing and preparation of input data, including the categorization of chest X-ray
images into healthy and pneumonia classes; (2) implementation of the designed deep
learning model, incorporating the DenseNet architecture with the Mish activation function
and multi-scale convolutions; and (3) quantitative evaluation of the model’s diagnostic
performance in pneumonia detection, emphasizing metrics such as accuracy, precision, F1
score, sensitivity, and specificity.
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Figure 1. The study workflow for pneumonia recognition, utilizing a DenseNet architecture, Mish
activation function, and multi-scale convolutions, proceeded through the following phases: (1) input
data preparation, encompassing both healthy and pneumonia image classes; (2) implementation of
the proposed deep learning model; and (3) evaluation of the implemented model’s performance in
pneumonia recognition, including accuracy assessment.

3.1. Data Preparation and Experimental Setup

We used the publicly available Chest X-ray Images (Pneumonia) dataset [30] for our
experiments, which includes X-ray images of pediatric patients aged one to five years from
Guangzhou Women and Children’s Medical Center. The dataset contains 5856 images,
categorized into two groups: pneumonia (4273 images) and healthy (1583 images) [30]. All
chest radiographs were initially screened for quality control, and low-quality or unreadable
scans were removed prior to analysis. Diagnoses for the images were graded by two expert
physicians, with a third expert verifying the evaluation set to minimize grading errors and
ensure the reliability of the dataset [30]. Samples of used images are shown in Figure 2. To
ensure a balanced evaluation, we performed a stratified random split of the dataset into
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training and validation subsets in an 80:20 ratio, preserving the class distribution. Due
to computational resource constraints and the large dataset size, we opted for a single
80:20 split instead of k-fold cross-validation, which would have significantly increased
training time without providing proportional benefits in this context. Although we did
not apply explicit measures such as class weighting or oversampling to address the class
imbalance, the CNN inherently adapts to the data distribution through its training process.
Additionally, data augmentation techniques, including rotation, shifting, zooming, and
horizontal flipping, were applied during preprocessing to increase dataset variability and
improve model generalization. All images were resized to 224 × 224 pixels.
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We developed and trained the deep learning models using Python with the Keras-
GPU [31] and TensorFlow-GPU [32] frameworks on the Google Colab platform. The
platform’s NVIDIA Tesla K80 GPUs with 12 GB of memory enabled efficient training. The
models were trained over 20 epochs with a batch size of 32, utilizing the Adam optimization
algorithm to update model parameters dynamically. The learning rate was automatically
adjusted during training using a reduction mechanism that lowered it when validation
performance plateaued, with a minimum of 0.5 × 10−6 to optimize convergence and
prevent overfitting.

3.2. Model Architecture for Proposed Approach

Multi-scale convolution is a powerful technique in CNNs that enhances feature ex-
traction by capturing information across varying spatial resolutions. Unlike standard
convolutional layers that operate with fixed filter sizes, multi-scale convolution utilizes
filters of different dimensions to simultaneously extract fine-grained and coarse-grained
features [33]. This capability is particularly beneficial for medical image analysis, such as
pediatric pneumonia recognition, where diverse patterns and textures must be identified
across varying spatial scales. By combining outputs from filters of varying sizes, our model
effectively captures both local and global features, making it more robust to variations in im-
age resolution and scale [34,35]. This ability to capture multi-resolution features improves
the model’s generalizability, particularly in clinical datasets with heterogeneous imaging
conditions [36,37]. Additionally, multi-scale convolution reduces the risk of overfitting by
diversifying the spatial patterns used during feature extraction.

In this research, we utilized the pretrained DenseNet201 network as the foundational
framework for feature extraction. DenseNet201, renowned for its intricately connected
structure and effective feature reuse, was pretrained on ImageNet, thus providing a sub-
stantial basis for transfer learning. We chose to freeze the pretrained layers of DenseNet201
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to preserve the learned features; however, we incorporated multi-scale convolutional lay-
ers on top. Specifically, we implemented filters of sizes 3 × 3, 5 × 5, and 7 × 7, which
enabled the model to capture features across various spatial resolutions. These multi-scale
outputs were then concatenated, forming a more comprehensive feature representation,
which improved the model’s capacity to detect pneumonia-related patterns in chest X-ray
images. Additionally, we enhanced the architecture with pooling operations and a fully
connected dense layer for classification because this allows for more accurate predictions.
The convolutional operation in this architecture is expressed in Equation (1):

y(i, j) =
M−1

Σ
m=0

N−1
Σ

n=0
x(i + m, j + n) ∗ w(m, n), (1)

where x(i + m, j + n) represents the input feature map, w(m, n) denotes the convolution
filter of size M× N, and y(i, j) is the resulting output feature [38]. The multi-scale convo-
lutional framework incorporates filters of different dimensions to capture diverse spatial
patterns, thereby enhancing the model’s ability to recognize complex and heterogeneous
radiographic presentations, as demonstrated in Algorithm 1.

Algorithm 1: Multi-Scale Convolution

1. function MultiScaleConvolution (Input_Image, Kernels, Biases)
2. Input:
3. Input_Image: 2D matrix of pixel intensities
4. Kernels: List of 2D filter matrices [Kernel1, Kernel2,. . ., KernelN]
5. Biases: List of corresponding bias terms [Bias1, Bias2,. . ., BiasN]
6. Output: Combined_Feature_Map
7. InitializeFeature_Maps as an empty list
8. for each scale k in range 1, N do
9. Kernel← Kernels[k]
10. Bias← Biases[k]
11. Feature_Mapk ← Convolution (Input_Image, Kernel, Bias)
12. Append Feature_Mapk to Feature_Maps
13. end for
14. Combine all Feature_Mapk into a single representation:
15. Combined_Feature_Map← Concatenate (Feature_Maps)
16. return Combined_Feature_Map
17. end function

To further improve the model’s efficacy, the Mish activation function was utilized in
the multi-scale convolutional layers. Mish, as mathematically defined in Equation (2):

Mish(x) = x ∗ tanh(softplus(x))= x ∗ tanh(ln(1 + ex)) (2)

provides smoother gradient propagation and better convergence compared to traditional
activation functions such as ReLU [39]. Unlike ReLU, which truncates negative values,
Mish retains negative information through a smooth, non-monotonic curve, improving
the model’s capacity to learn subtle patterns and enhancing its generalization capabil-
ities [39,40]. Supporting its adoption in this work, prior studies show Mish’s superior
performance compared to ReLU and Swish in CNN-based tasks, particularly within the
field of medical imaging, including applications for pediatric pneumonia recognition [41].
Moreover, we conducted experiments comparing our model using the Mish activation
function against the same model using ReLU. This comparative analysis allowed us to em-
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pirically evaluate the impact of Mish on performance metrics and validate its effectiveness
in our specific application.

Overall, the proposed approach is demonstrated in Algorithm 2.

Algorithm 2: Multi-Scale Convolution and Mish activation function with Pretrained
DenseNet201

1. Step 1: Define Mish Activation Function
2. Define the Mish activation function:
3. Mish(x) = x * tanh(softplus(x)), where:
4. softplus(x) = log(1 + exp(x)),
5. tanh(x) = (exp(x) – exp(-x))/(exp(x) + exp(-x)).
6. Step 2: Load Pretrained Model
7. Load DenseNet201 pretrained on ImageNet without the top layers.
8. Freeze the pretrained layers for feature extraction.
9. Step 3: Add Multi-Scale Convolutions
10. Extract features from DenseNet201 (base_model.output).
11. Apply multi-scale convolutional layers:
12. conv_small with filter size 2 × 2, activation: mish.
13. conv_medium with filter size 4 × 4, activation: mish.
14. conv_large with filter size 8 × 8, activation: mish.
15. Concatenate multi-scale features.
16. Step 4: Global Pooling and Classification
17. Apply GlobalMaxPooling2D on concatenated features.
18. Add a Dense layer with sigmoid activation for binary classification.
19. Step 5: Compile and Train the Model
20. Compile the model using:
21. Optimizer: Adam.
22. Loss function: binary_crossentropy.
23. Metrics: Accuracy and AUC.
24. Train the model with the training generator.

3.3. Pediatric Pneumonia Performance Evaluation

We assessed the performance of deep learning models for classifying pneumonia in
chest X-ray images using precision, recall, specificity, F1 score, and accuracy, as defined
in Equations (3)–(7). These metrics, calculated from the confusion matrix, provided a
comprehensive evaluation of the models’ diagnostic capabilities:

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

F1 score = 2 × Precision × Recall
Precision + Recall

, (6)

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

We defined true positives (TP) as cases where the model correctly identified pneumonia
and true negatives (TN) as cases without pneumonia that were accurately classified. False
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positives (FP) occurred when the model incorrectly classified non-pneumonia cases as
pneumonia, and false negatives (FN) represented missed pneumonia cases. Specificity
measured the model’s ability to correctly identify non-pneumonia cases, complementing
recall, which focused on detecting pneumonia cases. Chest X-ray images with pneumonia
typically showed patterns such as increased lung density, consolidation, or pleural effusion,
while diagnostic errors often resulted from overlapping features with other conditions or
artifacts in the images.

4. Results and Discussion
The proposed model with the Mish activation function achieved notable performance

in the diagnosis of pediatric pneumonia from radiological images, demonstrating an overall
accuracy of 0.9642. A more comprehensive evaluation of accuracy assessment is presented
in Table 1. This high accuracy indicates the model’s effectiveness in correctly classifying
both pneumonia-positive and healthy samples within the dataset, as reflected in the asso-
ciated performance metrics. Furthermore, the table presented the results of the ablation
study, comparing the Mish activation function against ReLU. This comparison provided
the numerical evidence mentioned earlier, quantifying the impact of Mish on performance
metrics and validating its effectiveness in this specific application. The F1 score was em-
ployed as a key evaluation metric due to its ability to provide a harmonic mean of precision
and recall, particularly valuable in datasets characterized by class imbalance. During the
research evaluation, it was concluded that accuracy is the most commonly used metric. We
utilized it to enable an objective comparison with other studies. In addition to accuracy, the
F1 score was also employed, although it was observed that many studies did not include
this metric despite dealing with imbalanced datasets. To encourage future studies to adopt
a fully objective approach to evaluating solutions, we emphasized the following metrics
in our analysis: Accuracy, Precision, Recall (sensitivity), F1 score, and specificity, thereby
ensuring a comprehensive and detailed evaluation. In this study, we employed a dataset
consisting of 4273 chest X-ray images of pneumonia cases and 1583 images of healthy
individuals. Despite the observed class imbalance, the model achieved a high F1 score of
0.9542, indicating a negligible impact of imbalance on the model’s capacity for accurate
classification. We extensively evaluated sensitivity and specificity to ensure accurate diag-
noses, minimizing both missed cases and unnecessary treatments and ultimately improving
patient outcomes. The model demonstrated a sensitivity of 0.9506, reflecting its ability to
correctly identify pediatric patients with pneumonia while reducing the risk of missed
or delayed diagnoses, which can have a serious impact on patient outcomes. Onwards,
the model also demonstrated a high specificity of 0.9507, reflecting its ability to accurately
classify healthy patients and to minimize false positives, thereby reducing unnecessary
treatments such as inappropriate antibiotic use, which can lead to unwanted side effects
and contribute to antibiotic resistance.

Table 1. Accuracy assessment of the proposed approach.

Metric Model with Mish Model with ReLU

Accuracy 0.9642 0.9616

Precision 0.9580 0.9534

Recall (Sensitivity) 0.9506 0.9489

F1 score 0.9542 0.9511

Specificity 0.9507 0.9489
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These findings are corroborated by the confusion matrix, which is shown in
Figure 3. The model correctly identified 838 pneumonia-positive cases (true positives)
and 292 healthy cases (true negatives) while misclassifying 25 healthy cases (false posi-
tives) and 17 pneumonia cases (false negatives). These outcomes align with the reported
performance metrics, underscoring the model’s reliability and effectiveness in pediatric
pneumonia diagnosis. Further analysis of these misclassified instances suggested that some
errors arose from cases exhibiting borderline radiological features or overlapping radiologi-
cal characteristics with other pulmonary conditions, such as bronchitis or atelectasis. The
findings suggest that augmenting the training dataset and implementing region-specific
feature enhancement techniques could lead to a reduction in such misclassifications.
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To further validate the model, enhance interpretability, and facilitate clinical integra-
tion, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed. Grad-
CAM generates visual explanations by producing heatmaps that highlight the image
regions most salient to the model’s classification. In our architecture, this technique was
applied to the last convolutional layer to ensure that the extracted features were both
spatially and semantically rich. This technique is particularly valuable in the context of
pediatric pneumonia diagnosis, as it offers transparency into the model’s decision-making
process, enabling verification of its diagnostic rationale and fostering clinical trust. In
healthy cases, Grad-CAM typically generates diffuse activation patterns across the lung
fields, consistent with the absence of focal pathology. Conversely, in cases of viral pneu-
monia, Grad-CAM heatmaps demonstrate more distributed and heterogeneous activation,
often encompassing perihilar regions and reflecting the characteristic interstitial infiltrates
associated with viral infection. In contrast, bacterial pneumonia exhibits more localized
and intense activation patterns, concentrated over regions of consolidation, aligning with
the typical lobar presentation of bacterial infection. The results are presented in Figure 4.

The proposed approach yielded an accuracy of 0.9642, placing it among the highest
reported accuracies in this domain. A comparative evaluation is provided in Table 2. This
result is slightly higher than the accuracy achieved by Vrbancic and Podgorelec [42], who
reported an accuracy of 0.9626 using their SGDRE method on a similarly sized dataset.
Other studies, such as Jaganathan et al. [43] using the LeNet-5 model on a significantly
larger dataset of 84,484 images, reported an accuracy of 0.9600, which is comparable to ours
despite the larger dataset. Notably, many methods using ensemble architectures, such as
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Ha Pham and Tran [24], who reported an accuracy of 0.9503, and Mabrouk et al. [44], who
reported an accuracy of 0.9391, achieved slightly lower accuracy values despite leveraging
advanced combinations of models. This suggests that our single-model approach provides
state-of-the-art performance without requiring the complexity of ensemble methods. In
terms of the F1 score, our approach achieved 0.9640, outperforming most other methods
that explicitly reported this metric. For example, Wang et al. [29], employing a custom CNN
with a dataset of 5857 images, achieved an F1 score of 0.9430, while Mabrouk et al. [44]
reported an F1 score of 0.9343 with their ensemble method on a dataset of the same
size. Notably, Jaganathan et al. [43] and AlGhamdi [45] also achieved F1 scores of 0.9600
using LeNet-5 and MobileNetV3, respectively, with larger datasets. These comparisons
highlight the efficiency of our approach, which performs competitively with methods
that use significantly more training data. Some studies, such as Mardianto et al. [46], did
not report F1 scores, focusing only on accuracy. This omission is concerning, as accuracy
alone does not provide insight into the balance between false positives and false negatives,
which is particularly important in medical diagnostics where class imbalances are common.
By not reporting F1 scores, these studies risk underestimating the importance of false
negative rates, which can have critical clinical implications. Reporting the F1 score, on the
other hand, ensures a more comprehensive evaluation of a model’s performance in such
sensitive applications.
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Our approach, based on the improved DenseNet201 model with multi-scale convolu-
tions and the Mish activation function, achieved superior metrics compared to both custom
CNNs and hybrid combinations of CNNs with other methods. For instance, our accuracy
of 0.9642 surpasses the performance of Wang et al. [29], who used a custom CNN which
performed an accuracy of 0.9280 and F1 score of 0.9430, and Stephen et al. [22], who also
employed a custom CNN but did not report an F1 score. Similarly, our results outperform
Mardianto et al. [46], who combined a CNN with SVM and achieved an accuracy of 0.9200
without reporting an F1 score. Compared to ensemble methods, such as Ha Pham and
Tran [24], our approach demonstrated a higher accuracy of 0.9642 compared to 0.9503 and
similar F1 scores of 0.9640 compared to 0.9604. This suggests that our model is more stream-
lined while maintaining comparable or better performance than more complex architectures.
Instead of developing custom CNNs, which demand extensive hyperparameter tuning
and large training datasets for effective generalization, our approach leverages transfer
learning with a pre-trained DenseNet201 model. The utilization of features pre-trained on
the extensive ImageNet dataset facilitates efficient training and robust performance, even
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with limited medical data, representing a substantial advantage in medical imaging where
the acquisition of large, annotated datasets is often both challenging and costly. While
custom CNNs trained on limited data are susceptible to overfitting and poor generalization,
transfer learning with DenseNet201 provides a strong inductive bias, promoting better
generalization and faster convergence. The incorporation of multi-scale convolutions and
the Mish activation function further refine feature extraction from chest X-rays, surpass-
ing standard transfer learning performance. This combined strategy of transfer learning
with targeted architectural modifications offers a more efficient and effective alternative to
building custom CNNs from scratch.

A clear progression in performance metrics can be observed over recent years as
models have evolved to leverage larger datasets and more advanced architectures. For
instance, early approaches, such as Manickam et al. [47] using ResNet50 in 2021, achieved
an accuracy of 0.9306 and an F1 score of 0.9271 on 5232 images. Similarly, Mabrouk et al. [44]
in 2022 achieved an accuracy of 0.9391 and an F1 score of 0.9343 using ensemble methods.
However, more recent studies, such as Vrbancic and Podgorelec [42] in 2022, who reported
an accuracy of 0.9626 accuracy and an F1 score of 0.974, and Kaya [28] in 2024, who reported
an accuracy of 0.9503 accuracy and an F1 score of 0.9603, reflect a steady improvement in
results, primarily due to advancements in model architectures and training strategies.

Table 2. Comparison and evaluation of the proposed approach and scientific studies in the last six
years according to the data from the Web of Science Core Collection.

Reference Year CNN Model No. of Images Accuracy F1 Score

Mardianto et al. [46] 2024 CNN+SVM 6140 0.9200 -

AlGhamdi [45] 2024 MobileNetV3 14,000> - 0.9600

Jaganathan et al. [43] 2024 LeNet-5 84,484 0.9600 0.9600

Dzhaynakbaev et al. [48] 2024 VGG16 5228 - -

Ha Pham and Tran [24] 2024
Ensemble

(InceptionResNetV2,
DenseNet201, VGG16)

5856 0.9503 0.9604

Mabrouk et al. [44] 2022
Ensemble (MobileNetV2,

DenseNet169, Vision
Transformer)

5856 0.9391 0.9343

Stephen et al. [22] 2019 Custom CNN 5856 0.9531 -

Lan et al. [49] 2024 DenseNet121 578 0.8100 -

Kaya [28] 2024 DenseNet121 5856 0.9503 0.9603

Manickam et al. [47] 2021 ResNet50 5232 0.9306 0.9271

Wang et al. [29] 2022 Custom CNN 5857 0.9280 0.9430

Vrbancic and Podgorelec [42] 2022 SGDRE method 5858 0.9626 0.9744

Yi et al. [50] 2023 Custom CNN 5856 0.9609 -

Our approach 5856 0.9642 0.9640

Hybrid models, such as the one proposed by Mardianto et al. [46], which integrate
CNN with SVM, leverage the improved classification boundaries provided by SVM. How-
ever, their relatively lower accuracy of 0.9200 and omission of F1 scores raise concerns
about their ability to manage class imbalances effectively. Similarly, ensemble methods
such as those employed by Ha Pham and Tran [24] and Mabrouk et al. [44] leverage the
diversity of models like InceptionResNetV2, DenseNet201, and Vision Transformers to
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achieve competitive F1 scores of 0.9604 and 0.9343, respectively. Despite these advan-
tages, the complexity and resource demands of ensemble architectures pose significant
challenges in terms of interpretability, computational efficiency, and scalability. Custom
CNNs, including those developed by Stephen et al. [22], Wang et al. [29], and Yi et al. [50],
exhibit flexibility and adaptability to specific datasets, yielding accuracy values ranging
from 0.9280 to 0.9609. Their performance highlights the potential of tailored architectures;
however, the omission of F1 scores in some cases and slightly lower performance compared
to pre-trained models suggest limited generalizability and challenges in capturing complex
data patterns. Pre-trained architectures like DenseNet and ResNet demonstrate consistent
performance due to their robust design. For example, Kaya [28] and Manickam et al. [47]
reported accuracy values of 0.9503 and 0.9306, respectively, showcasing the efficacy of
DenseNet121 and ResNet50 in feature propagation and handling gradient-related issues.
However, DenseNet’s performance can vary depending on dataset size and complexity, as
evidenced by the low accuracy of 0.8100 achieved by Lan et al. [49] on a small dataset of
578 images. Among lightweight models, AlGhamdi [45] utilized MobileNetV3 to achieve
an F1 score of 0.9600 on a larger dataset (>14,000 images), demonstrating its efficiency for
resource-constrained environments. However, the absence of accuracy metrics limits a
holistic evaluation of its performance. Similarly, foundational architectures like LeNet-5,
used by Jaganathan et al. [43], achieved competitive accuracy and F1 scores of 0.9600 on a
significantly larger dataset with 84484 images, though their simplicity may constrain their
ability to capture complex features compared to modern architectures. Optimization-based
approaches such as the SGDRE method by Vrbancic and Podgorelec [42] delivered an out-
standing performance, achieving the highest F1 score of 0.9744 and an accuracy of 0.9626.
While this underscores the potential of targeted optimization strategies, such methods
might face limitations in adaptability across diverse datasets. The proposed approach,
leveraging an improved DenseNet201 model enhanced with multi-scale convolutions
and the Mish activation function, outperformed most compared methods, achieving the
highest accuracy of 0.9642 and an F1 score of 0.9640. Its ability to deliver superior perfor-
mance without requiring ensemble complexities highlights its efficiency. However, like
other pre-trained architectures, its reliance on transfer learning may limit domain-specific
interpretability compared to custom CNNs tailored exclusively for the task.

By utilizing a deep convolutional architecture, the model significantly reduces com-
putational demands compared to ensemble-based methodologies, making it suitable for
deployment in resource-constrained environments. This efficiency enables integration
into point-of-care diagnostic tools, such as portable X-ray devices and mobile applications,
thereby broadening access to accurate and timely diagnoses in low-resource and remote
clinical settings. Additionally, the model has the potential to integrate seamlessly into
telemedicine workflows, where portable X-ray systems combined with cloud-based analy-
sis could provide rapid diagnostic support for patients in underserved areas. The model’s
resilience to class imbalance, in conjunction with training on publicly available datasets,
significantly enhances its generalizability across varied patient populations. This model is
also engineered to accommodate cloud-based deployment strategies, which yield several
notable advantages. For instance, it offers scalability to manage substantial volumes of
radiological data originating from multiple healthcare facilities. However, it also enhances
accessibility, allowing clinicians in under-resourced areas to upload and analyze images
in real time. Despite these strengths, limitations include the reliance on publicly available
datasets, which may not fully capture the variability in image quality or geographic and
demographic diversity. Plans for external validation using diverse real-world datasets are
essential to further establish the model’s reliability and applicability. Although it establishes
a framework for continuous model refinement through iterative updates and retraining,



Algorithms 2025, 18, 98 14 of 17

this ensures alignment with evolving diagnostic standards and expanding datasets. A
possible solution that incorporates cloud-based infrastructure could facilitate centralized
data processing, all while preserving the model’s clinical relevance over time, making it an
adaptable and sustainable solution for medical image analysis.

5. Conclusions and Future Work
In summary, the advanced deep learning model, which employs the DenseNet201

architecture, along with the Mish activation function and multi-scale convolutions, demon-
strates impressive performance in diagnosing pediatric pneumonia from chest X-rays.
Trained on a dataset comprising 5856 images, it achieved an overall accuracy of 96.42%,
thereby securing its position among the top methodologies within this field. However, its
performance not only exceeds that of numerous ensemble-based techniques, but it also
retains a streamlined and computationally efficient design. This architectural efficiency
is particularly advantageous for deployment in resource-constrained environments be-
cause ensemble methods can often be impractical due to their inherent complexity and
computational requirements. The model’s ability to provide timely and accurate diag-
noses offers a scalable solution for addressing diagnostic gaps in low- and middle-income
countries, where pneumonia remains a leading cause of childhood mortality, contribut-
ing to over 740,000 deaths annually. By reducing reliance on radiologists and advanced
diagnostic infrastructure, the model has the potential to enhance healthcare delivery in
under-resourced regions.

Despite its strengths, limitations include dependency on high-quality datasets, po-
tential biases in training data, and challenges in generalizing across diverse populations.
Furthermore, epidemiological and demographic distributions in LMICs may differ sig-
nificantly from the public datasets used in this study. This limitation highlights the need
for further validation using real-world and diverse demographic data to ensure broader
applicability and reliability of the model. Future work could also explore multi-class tasks,
such as distinguishing between bacterial and viral pneumonia, to enhance diagnostic preci-
sion and clinical relevance. To address these limitations, we aim to incorporate additional
imaging modalities and integrate the model into clinical decision support systems. Scal-
ability for other modalities, such as ultrasound, represents an important opportunity for
expanding the model’s utility across different healthcare contexts. Additionally, cloud-
based deployment strategies could enhance scalability, enabling real-time analysis and
continuous model refinement to adapt to evolving clinical needs. This approach represents
a significant step forward in leveraging artificial intelligence for equitable and effective
healthcare delivery.
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Abstract: Pediatric pneumonia remains a critical global health challenge requiring accu-
rate and interpretable diagnostic solutions. Although deep learning has shown potential
for pneumonia recognition on chest X-ray images, gaps persist in understanding model
interpretability and feature learning during training. We evaluated four convolutional
neural network (CNN) architectures, i.e., InceptionV3, InceptionResNetV2, DenseNet201,
and MobileNetV2, using three approaches—standard convolution, multi-scale convolution,
and strided convolution—all incorporating the Mish activation function. Among the tested
models, InceptionResNetV2, with strided convolutions, demonstrated the best perfor-
mance, achieving an accuracy of 0.9718. InceptionV3 also performed well using the same
approach, with an accuracy of 0.9684. For DenseNet201 and MobileNetV2, the multi-scale
convolution approach was more effective, with accuracies of 0.9676 and 0.9437, respectively.
Gradient-weighted class activation mapping (Grad-CAM) visualizations provided critical
insights, e.g., multi-scale convolutions identified diffuse viral pneumonia patterns across
wider lung regions, while strided convolutions precisely highlighted localized bacterial
consolidations, aligning with radiologists’ diagnostic priorities. These findings establish
the following architectural guidelines: strided convolutions are suited to deep hierarchical
CNNs, while multi-scale approaches optimize compact models. This research significantly
advances the development of interpretable, high-performance diagnostic systems for pedi-
atric pneumonia using chest X-rays, bridging the gap between computational innovation
and clinical application.

Keywords: pediatric pneumonia; convolutional neural networks; Mish activation function;
multi-scale convolution; strided convolution; model interpretability; feature extraction

1. Introduction
Worldwide morbidity and mortality from pediatric pneumonia persist as the key

condition affecting children under five years old [1], with the highest burden observed
in low- and middle-income countries (LMICs) [2]. Pneumonia causes 14% of deaths in
children aged five and under, based on data from the World Health Organization, re-
sulting in an estimated 740,000 fatalities annually [3]. Globally, the disease contributes
to 10–20 million hospitalizations each year, with an incidence of 150–156 million cases,
of which over 80% occur in LMICs [1,4]. Regions such as South Asia and Sub-Saharan
Africa are disproportionately affected, with pneumonia being a leading cause of childhood
mortality and a significant contributor to healthcare system strain [4]. Viral pathogens
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remain the main cause of pneumonia, but the introduction of vaccines against Streptococcus
pneumoniae and Haemophilus influenzae has led to significant decline in bacterial pneumonia
cases [5–7]. Nevertheless, S. pneumoniae and Mycoplasma pneumoniae remain the leading
bacterial pneumonia pathogens affecting vaccinated pediatric patients beyond the neonatal
stage [8,9]. The symptoms of pediatric pneumonia clinically present as cough with fever
and quick breathing, along with signs of respiratory problems, often accompanied by sys-
temic manifestations such as fatigue, vomiting, and decreased appetite [10,11]. The severity
of the condition can lead to complications involving pleural effusion, hypoxemia, and
respiratory failure, necessitating prompt diagnosis and intervention [12,13]. Chest X-rays
are crucial for diagnosing pediatric pneumonia by visualizing key lung pathologies such
as consolidation, interstitial infiltrates, and pleural effusion. However, interpreting chest
X-rays remains a challenging task for radiologists, especially when assessing early-stage
infections or when clinical symptoms match those of other respiratory conditions [14,15].
Moreover, access to radiologists and advanced imaging technologies varies, along with the
ability to perform feature extraction [16]. CNNs excel at identifying complex patterns in
imaging data, making them particularly well-suited for tasks such as pneumonia recog-
nition in chest X-rays. However, the “black box” nature of these models has historically
limited their clinical adoption, as healthcare providers require interpretable and transparent
decision-making processes to trust and effectively utilize AI-driven tools [17–19]. This
challenge has spurred the development of visualization techniques, such as Grad-CAM,
which provide insights into the regions of an image that influence a model’s predictions [20].
By generating heatmaps that highlight areas of interest, Grad-CAM enables clinicians to
understand how a CNN arrives at its conclusions, thereby bridging the gap between AI
and clinical practice [21]. The integration of Grad-CAM into deep learning frameworks for
medical image analysis offers several advantages. First, it improves model transparency by
visually delineating the most influential regions in an image, such as areas of consolidation
or interstitial infiltrates in pneumonia cases. This interpretability fosters clinician trust and
enables the identification of potential biases or errors, allowing for iterative model refine-
ment [22,23]. Second, Grad-CAM supports the validation of model predictions by ensuring
alignment between highlighted regions and established clinical features, reinforcing the
model’s focus on biologically relevant areas [24,25]. Lastly, these visualization techniques
serve as valuable educational tools, aiding less experienced clinicians in recognizing the
subtle radiographic manifestations of pneumonia that might otherwise be overlooked [26].

Despite significant advancements in deep learning for medical image analysis, the
application of deep learning visualization techniques to pneumonia classification, particu-
larly in pediatric cases, remains underexplored. A comparative analysis of research trends
from 2015 to 2024 indicates a substantial increase in studies focused on deep learning
visualization in medicine, reaching a peak of approximately 450 publications in 2021. While
the Web of Science Core Collection [27] indexes a substantial volume of scientific publica-
tions, research specifically focused on pneumonia represents a comparatively minor subset,
peaking at 22 publications in 2021 and subsequently exhibiting a decline, as quantitatively
depicted in Figure 1. This trend underscores a critical research gap in the application of
deep learning visualization for pneumonia classification, particularly in pediatric pop-
ulations. While established visualization methodologies such as Grad-CAM have been
integrated into emerging research to enhance pneumonia recognition using CNNs, the
interpretability of CNN models in this domain remains insufficiently investigated. Key
areas requiring further exploration include feature activation patterns and the optimization
of training efficiency.
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Several research gaps persist in the application of deep learning for pediatric pneumo-
nia classification. First, there is limited understanding of how CNNs process and interpret
images during various phases of training [22,26]. Identifying the stages of training that
most significantly contribute to learning and analyzing the evolution of feature activation
over time could provide valuable insights for optimizing model performance and inter-
pretability. This is particularly relevant for pediatric pneumonia, where subtle radiographic
patterns necessitate precise feature extraction and analysis. Second, while advanced acti-
vation functions such as Mish have demonstrated superior results regarding smoothness,
as well as improved gradient flow capabilities compared to those of traditional functions
like ReLU [28], their potential in pediatric pneumonia diagnosis remains largely untapped.
The ability of Mish to recognize complex features within chest radiographs has not been
fully leveraged, revealing opportunities for improvements in diagnostic accuracy and com-
putational efficiency. Third, although visualization techniques like Grad-CAM have been
applied to medical imaging, their use in analyzing feature activation patterns across diverse
CNN architectures—such as standard CNNs, multi-scale CNNs, and strided CNNs—has
not been systematically explored. Understanding how these architectures differ in their
capacity to highlight clinically relevant features in pediatric pneumonia cases is essential
for developing more interpretable and reliable models. Finally, there is a pressing need for
research that balances diagnostic accuracy with computational efficiency, particularly for
deployment in resource-constrained settings where pediatric pneumonia is most preva-
lent. Many existing models are computationally intensive, limiting their applicability in
low-resource environments [29]. Addressing these gaps is critical for advancing the field
of pediatric pneumonia diagnosis and ensuring the development of effective and acces-
sible AI-driven tools. This research provides valuable additions to pediatric pneumonia
diagnostic methods and deep learning in the following ways:

• It provides a detailed analysis of how CNNs perceive and process images during
different training phases, identifying critical learning stages that enhance model
performance and interpretability in pediatric pneumonia classification.

• By evaluating three distinct CNN architectures—standard, multi-scale, and
strided—this research offers a comprehensive comparison of their strengths and limi-
tations, guiding the selection of optimal models for pediatric pneumonia diagnosis.

• Leveraging the Mish activation function and Grad-CAM visualization, this work
enhances model transparency and diagnostic accuracy, enabling clinicians to better
understand and trust AI-driven tools for pediatric pneumonia recognition.
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Following this introduction, the paper proceeds as follows: Section 2 reviews the rele-
vant literature. Section 3 provides a detailed description of the models and methodologies
used. Section 4 presents and analyzes the key results. Finally, Section 5 concludes the paper
with summary remarks and suggestions for future work.

2. Related Works
Advances in deep learning, particularly CNNs, have substantially enhanced the

accuracy and interpretability of medical image analysis, particularly in the context of
pediatric pneumonia diagnosis.

Luján-García et al. [30] utilized deep learning for pneumonia diagnosis in children
under five, employing transfer learning with the pre-trained Xception network to classify
3883 pneumonia and 1349 normal chest X-ray images. The model achieved a precision of
0.84, a recall of 0.99, an F1 score of 0.91, and an AUC of 0.97, demonstrating competitive
performance. They applied Grad-CAM to generate heatmaps, enabling the localization of
pneumonia-related abnormalities. The study underscores the efficacy of transfer learning
and visualization techniques in enhancing deep learning-based medical image analysis.
Panwar et al. [31] developed a deep transfer learning model to enhance the accuracy and
interpretability of COVID-19 detection using chest X-ray and CT-scan images. They inte-
grated Grad-CAM for infection localization and implemented an early stopping mechanism
to mitigate overfitting. The model achieved an accuracies of 0.9655 in COVID-19 detection,
0.9404 in distinguishing COVID-19 from non-COVID cases, and 0.8947 in differentiating
COVID-19 from normal cases, demonstrating the efficacy of deep learning in reliable and
interpretable COVID-19 diagnosis. Zebin and Rezvy [32] developed a transfer learning
pipeline for automated COVID-19 classification using chest X-ray images from publicly
available datasets. They employed multiple pre-trained convolutional backbones as feature
extractors, achieving classification accuracies of 0.90 with VGG16, 0.94 with ResNet50, and
0.97 with EfficientNetB0. To address data imbalance, they trained a CycleGAN for the
synthetic augmentation of COVID-19 cases. Additionally, they implemented Grad-CAM to
enhance model interpretability, enabling the visualization of affected lung regions for diag-
nosis and monitoring disease progression. Rahman et al. [33] proposed a VGG-16-based
deep learning framework for explainable COVID-19 and pneumonia classification using
chest X-ray images. They incorporated image enhancement, ROI segmentation, and data
augmentation to improve accuracy. Additionally, they introduced a multi-layer gradient-
weighted class activation mapping (ML-Grad-CAM) algorithm to generate class-specific
saliency maps and a severity assessment index (SAI) to quantify infection severity. Their
model achieved an accuracy of 0.9644 in a three-class classification task, demonstrating
the potential of saliency maps for both diagnostic interpretation and severity assessment.
Mohagheghi et al. [34] proposed two methods for COVID-19 diagnosis and differentiation
from viral pneumonia using X-ray images. They employed deep neural networks for
classification and an image retrieval approach for discrimination, both trained on healthy,
pneumonia, and COVID-19 cases. Transfer learning and hashing functions enhanced the
performance, achieving an accuracy of 0.97 for CNN-based classification and an overall
precision of 0.87 for retrieval. Additionally, they introduced a decision support system
integrating image retrieval and visualization techniques, including CT involvement score
calculation, to provide physicians with interpretable diagnostic insights. Owais et al. [35]
developed a lightweight deep learning ensemble for COVID-19 diagnosis using CT-scan
and X-ray images, incorporating MobileNet, ShuffleNet, and FCNet to reduce the trainable
parameters to 3.16 million. They introduced a multilevel class activation mapping (ML-
CAM) layer to enhance lesion visualization, facilitating radiologist-assisted validation. A
novel hierarchical training procedure dynamically adjusted epochs based on validation
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performance, optimizing model convergence. The proposed model achieved F1-scores of
0.9460 (CT) and 0.9594 (X-ray), with AUCs of 0.9750 and 0.9799, respectively, demonstrating
outstanding diagnostic accuracy and computational efficiency.

While these studies point to the significant capabilities of deep learning in medical
image analysis, there remains a need to investigate how CNNs perceive images during
different training phases, particularly in the context of pediatric pneumonia classification.
Understanding which training stages contribute the most to learning and how feature acti-
vation evolves over time can provide valuable insights into optimizing model performance
and interpretability. This study aims to address these gaps by analyzing feature activation
maps using Grad-CAM and examining loss convergence across various CNN architec-
tures, including a standard CNN, a CNN with multi-scale convolution, and a CNN with
strided convolution. In each of these approaches, we employ the Mish activation function,
which has demonstrated superior performance in terms of smoothness and gradient flow
compared to that of traditional activation functions like ReLU [28,36,37]. By leveraging
Mish, we aim to enhance the model’s ability to capture complex patterns in chest X-ray
images, particularly in the context of pediatric pneumonia. Furthermore, by identifying
critical learning phases and optimizing training efficiency, this paper aims to improve the
interpretability of deep learning models while increasing their diagnostic accuracy when
classifying pediatric pneumonia.

3. Materials and Methods
In this study, we introduce an interpretable deep learning framework for pediatric

pneumonia diagnosis, integrating multi-phase feature learning and activation pattern anal-
ysis. The methodology involves three stages, as presented in Figure 2: (1) data preparation
and image preprocessing, including categorization into healthy and pneumonia classes,
using data augmentation techniques; (2) implementation and evaluation of InceptionV3,
InceptionResNetV2, DenseNet201, and MobileNetV2 architectures, where three convo-
lutional approaches were investigated: Approach 1, standard convolutions; Approach 2,
multi-scale convolutions; and Approach 3, strided convolutions, each combined with Mish
activation; and (3) performance assessment using standard metrics, with interpretability
analysis via Grad-CAM.
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3.1. Data Preprocessing and Experimental Setup

We employed the publicly available Chest X-Ray Images (Pneumonia) dataset [38],
which comprises 5856 pediatric chest X-ray scans collected from patients aged one to
five years at Guangzhou Women and Children’s Medical Center. The dataset consists of
4273 pneumonia cases and 1583 healthy controls [38]. To ensure data quality, an initial
screening of all chest radiographs was conducted to eliminate low-quality or unreadable
scans before analysis. Diagnosis assessment was conducted by two expert physicians who
graded the images. A third expert validated the evaluation dataset to ensure accuracy and
improve reliability. We partitioned the dataset using a stratified random split method at an
80:20 ratio, preserving the inherent class distribution. Although the dataset is imbalanced,
we adopted multiple strategies to mitigate the impact of this characteristic. First, we applied
extensive data augmentation—including rotation, translation, scaling, and horizontal
flipping—equally across both classes to artificially expand the training set and reduce
overfitting, specifically benefiting the minority (healthy) class. Second, we focused on
evaluation metrics sensitive to class imbalance, such as precision, recall, and F1-score, rather
than relying solely on accuracy. These metrics provided a more reliable assessment of model
performance across both pneumonia and healthy classes. Third, stratified splitting ensured
that the imbalance was consistently represented in both the training and validation sets,
preventing bias toward the majority class during evaluation. We opted for a single split over
k-fold cross-validation due to computational limitations, optimizing processing efficiency
while maintaining comparable model performance. To standardize input dimensions, we
resized all images to 224 × 224 pixels.

We built and trained the deep learning models in a Python 3.10 (Python Software
Foundation, Wilmington, DE, USA) environment in Google Colab, leveraging the Keras-
GPU [39] and TensorFlow-GPU [40] frameworks. We expedited training using NVIDIA
Tesla K80 GPUs (Nvidia Corporation, Santa Clara, CA, USA) with 12 GB of memory. For
each model, we set the training regimen to 20 epochs with a batch size of 32 and used
the Adam optimizer for dynamic parameter updates. To prevent overfitting and improve
convergence, we implemented an adaptive learning rate adjustment mechanism, reducing
the rate upon validation performance stagnation, with a lower bound of 0.5 × 10−6.

3.2. Interpretability and Convolutional Methods in Regards to Pneumonia Recognition

In this study, we employed four state-of-the-art CNN architectures for pneumo-
nia classification from pediatric chest X-ray images: InceptionV3, InceptionResNetV2,
DenseNet201, and MobileNetV2. Each architecture presents unique characteristics that
influence feature extraction, model complexity, and interpretability, particularly in the
medical imaging domain, as demonstrated in Table 1.

InceptionV3, for instance, utilizes factorized convolutions and multi-scale processing
via its Inception modules, enabling efficient, parallel feature extraction. It is particularly
beneficial for capturing diverse patterns indicative of pulmonary infections and balances
network depth against computational cost, a relevant consideration for pediatric datasets
potentially exhibiting subtle signs [41–43]. InceptionResNetV2 enhances this ability by
merging Inception’s multi-scale approach with residual connections, improving gradient
flow to stabilize the training of very deep networks. This architecture is well-suited for
learning complex, hierarchical features from detailed medical images, such as pediatric
radiographs, while maintaining training robustness [44]. DenseNet201 adopts a dense
connectivity pattern in which each layer accesses feature maps from all the preceding layers,
promoting extensive feature reuse and efficient information propagation. The integration
of multi-level features and its inherent parameter efficiency make it advantageous for tasks
like pneumonia recognition, especially with limited datasets [45,46]. Finally, MobileNetV2
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prioritizes computational efficiency through depth-wise separable convolutions and an
inverted residual structure, with linear bottlenecks. This design substantially reduces pa-
rameters and floating-point operations, rendering it highly suitable for resource-constrained
environments, although its streamlined architecture may offer less sensitivity to extremely
subtle features compared to that provided by more complex models [43,47].

Table 1. Comparative characteristics of CNN models employed for medical imaging.

Architecture Strengths Limitations

InceptionV3

Efficient multi-scale feature extraction through
Inception modules [41]; effective at capturing
fine-grained patterns, with moderate
computational cost [42].

May struggle with very subtle
features in pediatric lungs; not as
lightweight as MobileNetV2 [43].

InceptionResNetV2
Combines Inception modules with residual
connections; deeper and more accurate; improved
gradient flow [44].

Higher computational requirements;
risk of overfitting, if not carefully
regularized [44].

DenseNet201
Dense connectivity promotes feature reuse and
mitigates vanishing gradients [45]; strong
performance on small datasets.

Higher memory usage; feature maps
can become redundant, slightly
increasing inference time [37,46].

MobileNetV2
Lightweight with depth-wise separable
convolutions; ideal for real-time applications and
devices with limited resources [43].

May underperform on very complex
patterns when compared to the
results for heavier models; limited
representational capacity [47].

Grad-CAM is a visualization technique used to interpret the predictions of CNNs by
highlighting important regions in an input image [20,31]. This method utilizes the gradient
information flowing into the final convolutional layer to produce a coarse localization map
of the salient regions. By visualizing these areas, Grad-CAM aids in the interpretability
of deep learning models, which is crucial in medical applications such as pneumonia
classification, where understanding why a model makes a particular decision can improve
trust and reliability [48]. The class-discriminative localization map Lc for a target class is
computed as defined in Equation (1):

Lc = ReLU∑
k

αc
k Ak (1)

where Ak represents the activation maps of the last convolutional layer, and αc
k represents

importance weights computed as defined in Equation (2):

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(2)

Here, Z is the number of spatial locations, and yc represents the class score for class
c. The ReLU function ensures that only positive influences are considered, emphasizing
relevant regions in the image that contribute to the model’s decision [20,49]. This is particu-
larly beneficial in pneumonia classification, where highlighting infected lung regions in
chest X-ray images can assist radiologists in making more accurate diagnoses. Applying
Grad-CAM in this study not only enhances model transparency but also allows for cor-
relation between the architectural depth or complexity and the quality of the generated
heatmaps. Models like DenseNet201 and InceptionResNetV2, due to their richer feature
hierarchies, typically produce more distinct and clinically meaningful visual explanations
compared to lightweight models like MobileNetV2.
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In addition to interpretability techniques, activation functions play a crucial role in
deep learning models. The Mish activation function, a non-monotonic function, has been
shown to improve gradient flow and smoothness during training, leading to better feature
extraction and generalization [36,37]. It is defined mathematically using Equation (3):

Mish(x) = x ∗ tanh(softplus(x)) = x ∗ tanh(ln(1 + ex)) (3)

In contrast to ReLU, which sets the negative values to zero, Mish preserves small
negative values and provides a smooth transition, which is particularly beneficial in medical
image analysis, as demonstrated in recent studies. The smooth non-linearity helps in
preserving finer details in pneumonia classification tasks, allowing for improved model
robustness. Mish has also been observed to provide better feature representation compared
to that of traditional activation functions, leading to more stable training and enhanced
classification accuracy in deep learning architectures [36].

Deep learning models for pneumonia classification leverage different types of con-
volutional operations to extract meaningful features from chest X-ray images. Standard
convolutions are fundamental for capturing spatial features by applying fixed-size kernels
to detect the texture and structural patterns associated with pneumonia-infected lungs [50].
Multi-scale convolutions employ filters of varying sizes to detect abnormalities at different
resolutions, ensuring that subtle and large-scale pneumonia-related features are equally
recognized [41,51]. This enhances the model’s ability to generalize across diverse manifesta-
tions of the disease, such as varying opacity and lesion size in infected lungs. Additionally,
multi-scale convolutional layers help capture both local fine-grained details and broader
anatomical structures, which are essential for distinguishing pneumonia from other lung
conditions [52]. Strided convolutions serve a dual purpose of providing both feature extrac-
tion and dimensionality reduction, reducing computational complexity while preserving
critical spatial information [53,54]. Unlike max-pooling, strided convolutions ensure a more
structured downsampling process, which can be advantageous in medical image processing
where fine details are crucial for accurate diagnosis. By reducing the spatial resolution
while maintaining relevant features, strided convolutions facilitate deeper architectures
without excessive computational costs [55]. Furthermore, when combined with residual
connections, they mitigate information loss, ensuring that vital pneumonia-specific features
are retained through the network layers.

By integrating Grad-CAM for model interpretability, Mish activation for enhanced
feature extraction, and a combination of standard, multi-scale, and strided convolutions,
deep learning-based pneumonia classification systems can achieve higher accuracy and
robustness. These methodologies contribute to improved diagnostic performance, making
CNN-based models more reliable for medical applications. The ability to highlight affected
lung regions, capture multi-scale features, and efficiently process medical images enhances
the potential for the use of AI-assisted diagnostic tools in clinical settings, leading to better
patient outcomes and more informed medical decision making.

3.3. Pediatric Pneumonia Accuracy Assessment

We evaluated the performance of deep learning models for pneumonia classification in
chest radiographs. We analyzed training and validation accuracy, loss, and key classification
metrics, deriving them from the confusion matrix. These key metrics—precision, recall,
specificity, F1-score, and accuracy—as defined in Equations (4)–(8), allowed us to perform
a comprehensive evaluation of the models’ diagnostic capability, as follows:

Precision =
TP

TP + FP
, (4)
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Recall =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (7)

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

We classified the model’s outcomes as follows: true positives (TP), where it correctly
identified pneumonia cases; true negatives (TN), where it correctly identified non-pneumonia
cases; false positives (FP), where it incorrectly classified non-pneumonia cases as pneu-
monia; and false negatives (FN), where it incorrectly classified pneumonia cases as non-
pneumonia. We calculated specificity, which reflects the model’s ability to correctly identify
non-pneumonia cases, and recall (sensitivity), which reflects its ability to identify pneumonia
cases. Radiographic features indicative of pneumonia, including increased pulmonary opacity,
consolidation, and pleural effusion, served as primary discriminative criteria for the model’s
classification algorithm. However, the potential for overlapping radiographic manifestations
with alternative pathologies, coupled with the susceptibility to imaging artifacts, introduced
sources of diagnostic error, resulting in classification inaccuracies.

4. Results and Discussion
In this study, we evaluated the efficacy of four deep learning architectures—InceptionV3,

InceptionResNetV2, DenseNet201, and MobileNetV2—for pediatric pneumonia classifica-
tion. We implemented three distinct convolutional approaches—Approach 1, base model
with Mish activation function and standard convolution; Approach 2, base model with
Mish activation function and multi-scale convolutions; Approach 3, base model with Mish
activation function and strided convolutions. We assessed the performance of each architec-
ture and approach using established metrics, including accuracy, precision, recall, F1-score,
and specificity, providing a comprehensive evaluation of their classification capabilities. For
InceptionResNetV2, Approach 3 yielded the best results, achieving the highest accuracy of
0.9718 and F1-score of 0.9634. This approach demonstrated its ability to efficiently capture
complex features while maintaining a high precision of 0.9767 and a recall of 0.9519. The
combination of strided convolutions and the Mish activation function likely enhanced
feature extraction and generalization [56], making it the top-performing model overall.
Similarly, for InceptionV3, Approach 3 achieved its best performance with an accuracy of
0.9684 and an F1-score of 0.9595. This approach likely improved its hierarchical feature
extraction process and increased the specificity to 0.9211. The high precision and recall
indicate that the model effectively minimized false positives and false negatives, respec-
tively [57]. In contrast, DenseNet201 performed optimally with Approach 2, achieving an
accuracy of 0.9676 and an F1-score 0.9582. The multi-scale approach complemented the
dense connectivity of DenseNet201 by capturing features at multiple resolutions, leading
to a robust balance between sensitivity, with a recall of 0.9510, and specificity, with a score
of 0.9148. MobileNetV2 also benefited from Approach 2, achieving an accuracy of 0.9437
and an F1-score of 0.9254. Despite its smaller size, this approach allowed it to efficiently
extract diverse features [47], although its specificity of 0.8297 was lower compared to that
of other models. Key observations highlight that Approach 3 was particularly effective
for InceptionV3 and InceptionResNetV2, aligning well with their hierarchical feature ex-
traction processes and improving their computational efficiency. Approach 2 worked best
for DenseNet201 and MobileNetV2, enhancing their ability to capture features at multiple
resolutions while maintaining competitive performance. The precision and F1-score metrics
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revealed that all models effectively addressed class imbalance, with InceptionResNetV2
and DenseNet201 achieving the best balance between sensitivity and specificity. These
findings underscore the importance of tailoring architectural modifications to the strengths
of each model, as demonstrated in Table 2.

Table 2. Pneumonia classification accuracy assessment of proposed approaches.

Transfer Deep
Learning Model

Classification
Approach Accuracy F1-Score Precision Recall Specificity

InceptionV3
Approach 1 0.9573 0.9462 0.9444 0.9479 0.9274
Approach 2 0.9394 0.9202 0.9394 0.9049 0.8297
Approach 3 0.9684 0.9595 0.9659 0.9536 0.9211

InceptionResNetV2
Approach 1 0.9684 0.9604 0.9564 0.9645 0.9558
Approach 2 0.9539 0.9407 0.9483 0.9337 0.8896
Approach 3 0.9718 0.9634 0.9767 0.9519 0.9085

MobileNetV2
Approach 1 0.9206 0.9060 0.8871 0.9367 0.9716
Approach 2 0.9437 0.9254 0.9481 0.9078 0.8297
Approach 3 0.9104 0.8945 0.8754 0.9277 0.9653

DenseNet201
Approach 1 0.9650 0.9542 0.9709 0.9403 0.8864
Approach 2 0.9676 0.9582 0.9662 0.9510 0.9148
Approach 3 0.9573 0.9440 0.9622 0.9291 0.8675

Approach 1, base model with Mish activation function and standard convolution; Approach 2, base model with
Mish activation function and multi-scale convolutions; Approach 3, base model with Mish activation function and
strided convolutions. The highest assessment metrics are bolded.

The confusion matrix provides a detailed breakdown of model performance across
different classification approaches, as presented in Figure 3. For InceptionV3, Approach
3 yielded the best results, achieving a high true positive rate of 0.9860, with only 12 false
negative cases. In contrast, Approach 2 struggled to distinguish healthy cases, leading to
an increase in false positives. InceptionResNetV2 demonstrated consistent performance
across all approaches, with Approach 3 producing the lowest false negative rate of just four
cases and a recall of 0.9953, confirming its superior sensitivity in classifying pneumonia.
MobileNetV2, however, exhibited higher false positive rates using Approach 3, indicating
a tendency to misclassify healthy cases as pneumonia. The highest recall of 0.9860 was
observed in Approach 2, demonstrating strong pneumonia detection capabilities but at
the cost of increased false positives. DenseNet201 performed optimally with Approach
2, achieving a high specificity of 0.9148 and a recall of 0.9871 for pneumonia detection.
However, Approach 3 resulted in a higher number of false positives, suggesting a trade-off
in regards to specificity. Overall, Approach 3 proved the most effective for deeper models
like InceptionV3 and InceptionResNetV2, while multi-scale convolutions in Approach 2
were more beneficial for MobileNetV2 and DenseNet201 [37,46,58]. This pattern aligns with
the observed accuracy and F1-score trends, reinforcing the idea that different architectural
enhancements impact classification trade-offs in unique ways.

The results, evaluated in terms of training accuracy, validation accuracy, and val-
idation loss at 10 and 20 epochs, provide key insights into the learning dynamics and
generalization capabilities of each model, as demonstrated in Table 3. Notably, Approach
3 demonstrated superior efficacy for InceptionV3 and InceptionResNetV2. InceptionV3
achieved a validation accuracy of 0.9583 at 10 epochs and 0.9705 at 20 epochs, with the
lowest validation loss values of 0.1155 and 0.0744, respectively. Similarly, InceptionRes-
NetV2 exhibited substantial improvement in validation accuracy from 0.9392 to 0.9670,
while validation loss markedly decreased from 0.4888 to 0.0912. Conversely, Approach
2 yielded the most favorable results for DenseNet201 and MobileNetV2. DenseNet201
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attained a validation accuracy of 0.9592 at 10 epochs and 0.9566 at 20 epochs, accompanied
by validation loss values of 0.1171 and 0.1058, respectively. MobileNetV2 demonstrated
the fastest convergence, achieving a validation accuracy of 0.9549 by 10 epochs, with a
minimal change to 0.9523 at 20 epochs. Despite slightly higher validation loss values of
0.1289 at 10 epochs and 0.1383 at 20 epochs, MobileNetV2 exhibited stable training accuracy,
recording 0.9688 at 10 epochs and 0.9520 at 20 epochs.
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Table 3. Accuracy and validation loss during 10 and 20 epochs of training for the proposed approaches.

Transfer Deep
Learning Model

Classification
Approach

10 Epochs 20 Epochs

TA VA VL TA VA VL

InceptionV3
Approach 1 0.9379 0.9149 0.2379 0.9662 0.9714 0.1034
Approach 2 0.9364 0.9253 0.1844 0.9688 0.9384 0.1645
Approach 3 0.9638 0.9583 0.1155 0.9658 0.9705 0.0744

InceptionResNetV2
Approach 1 0.9688 0.9453 0.7087 0.9375 0.9714 0.0723
Approach 2 0.9302 0.9392 0.1664 0.9688 0.9497 0.1476
Approach 3 0.9512 0.9392 0.4888 0.9769 0.9670 0.0912

MobileNetV2
Approach 1 0.9375 0.9201 0.2278 0.9705 0.9193 0.2688
Approach 2 0.9688 0.9549 0.1289 0.9520 0.9523 0.1383
Approach 3 0.9664 0.8811 0.5385 0.9681 0.9314 0.2727

DenseNet201
Approach 1 0.9062 0.9314 0.2257 0.9688 0.9635 0.1372
Approach 2 0.9688 0.9592 0.1171 0.9375 0.9566 0.1058
Approach 3 0.9523 0.9583 0.1191 0.9062 0.9566 0.1254

Approach 1, base model with Mish activation function and standard convolution; Approach 2, base model with
Mish activation function and multi-scale convolutions; Approach 3, base model with Mish activation function
and strided convolutions; (TA) training accuracy; (VA) validation accuracy; (VL) validation loss. The highest
assessment metrics are bolded.
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From a generalization perspective, InceptionV3 achieved the lowest validation loss
of 0.0744 at 20 epochs, closely followed by DenseNet201 at 0.1058. Overall, the results
underscore the importance of selecting architectural modifications based on model depth
and computational constraints. Approach 3 proved beneficial for deeper architectures
such as InceptionV3 and InceptionResNetV2, whereas Approach 2 exhibited optimized
performance in more compact models like DenseNet201 and MobileNetV2.

Moreover, we analyzed Grad-CAM visualizations for deep learning models—InceptionV3,
InceptionResNetV2, MobileNetV2, and DenseNet201—in classifying healthy lungs, viral
pneumonia, and bacterial pneumonia from chest X-ray images, using multiple Grad-CAM
approaches to highlight key decision-making areas, as presented in Figure 4, Figure 5, and
Figure 6, respectively. In healthy cases, models like InceptionV3 and DenseNet201 show
minimal activation, primarily along the ribcage or lung periphery, while viral pneumonia is
characterized by diffuse, bilateral activation across both lungs, often including the heart re-
gion [59,60], as seen in MobileNetV2 and DenseNet201, which effectively capture interstitial
changes. Bacterial pneumonia, in contrast, is identified by sharp, localized activation, typi-
cally within one lung lobe [61], with DenseNet201 excelling in its detection due to its highly
focused heatmaps, while InceptionResNetV2 also well differentiates the sharply defined
activations in specific lobes. Grad-CAM approaches, particularly Approach 3, provide the
clearest visualizations, revealing sharp, focused bacterial pneumonia regions and broader,
generalized viral patterns, while Approach 1 highlights initial lung field activations, and
Approach 2 refines distinctions between pneumonia types. MobileNetV2 performs best for
viral pneumonia due to its strong central lung and heart activation, DenseNet201 is the most
accurate for bacterial pneumonia, with its distinct lobar focus, and InceptionResNetV2 of-
fers a balanced performance for both. Key takeaways include minimal activation in healthy
cases, diffuse patterns in viral pneumonia, and localized, sharp activations in bacterial
pneumonia, with DenseNet201 emerging as the most precise model for distinguishing
between the two pneumonia types [45,62]. Overall, Grad-CAM effectively illustrates how
these models interpret pneumonia patterns, confirming DenseNet201’s superiority for
bacterial pneumonia and MobileNetV2’s strength in viral pneumonia detection.
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The consistent performance of MobileNetV2 with Approach 2 across training and
validation metrics, coupled with its rapid convergence and stability, made it a suitable
choice for detailed interpretability analysis using Grad-CAM, as presented in Figure 7. Its
ability to generalize well, with minimal overfitting, underscores the importance of selecting
models that balance performance, efficiency, and interpretability, particularly in medical
image classification tasks, where false positives and false negatives can have significant
clinical implications [63,64].
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The integration of multi-scale convolutions with Mish activation in MobileNetV2
significantly improves heatmap-based lung disease detection by refining feature extraction
across multiple spatial resolutions. This architectural enhancement enables the model
to simultaneously capture fine-grained abnormalities, such as the diffuse opacities char-
acteristic of viral pneumonia, and larger consolidations typical of bacterial infections.
The multi-scale approach effectively suppresses false activations in non-pathological re-
gions, maintaining precise focus on diagnostically relevant areas throughout the training
process [41,52]. During the initial training phases, the multi-scale architecture mitigates
scattered attention patterns by promoting more meaningful feature extraction. As training
progresses to intermediate stages, it enhances consistency in activation patterns across
diverse lung pathologies. In the final training stages, this approach produces sharply
defined heatmaps, while preserving sensitivity to subtle pathological indicators that might
otherwise be overlooked. The Mish activation function offers superior gradient flow and
feature diversity compared to those of conventional ReLU activation [28,36]. Its smooth,
non-monotonic characteristics address several limitations of traditional activation functions.
Specifically, Mish prevents vanishing gradients during backpropagation while maintaining
richer feature representations. This property proves particularly valuable in medical image
analysis, where subtle pathological patterns require precise detection [37]. In early training
iterations, Mish activation helps avoid suboptimal initialization traps that can hinder model
convergence. During the intermediate training phases, it strengthens the mid-level feature
extraction capabilities. In the final training stages, Mish activation yields more confident
and precise spatial activations in the generated heatmaps. The combined implementation
of multi-scale convolutions and Mish activation provides multiple synergistic benefits.
First, it produces heatmaps with superior pathological localization. Second, it enhances
classification accuracy for distinguishing between viral and bacterial pneumonia manifesta-
tions. Third, it significantly reduces activation noise in healthy tissue regions. Fourth, it
accelerates model convergence, potentially enabling early stopping strategies, without com-
promising diagnostic performance. This optimized architecture demonstrates particular
value in regards to clinical decision support systems, where reliable detection of pulmonary
abnormalities must be maintained across diverse imaging conditions and acquisition pro-
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tocols. The improved interpretability of the resulting heatmaps provides clinicians with
more trustworthy visual explanations of the model’s diagnostic reasoning process.

This study has some limitations, primarily due to reliance on public datasets, which
may introduce biases in regards to image quality and patient demographics, affecting
generalizability. Future research should validate the model across diverse clinical settings
to enhance robustness. Implementing a hybrid cloud-edge infrastructure could enable scal-
able deployment, balancing centralized model updates with local inference for improved
data privacy. Additionally, long-term clinical integration requires continuous learning
mechanisms. Incorporating radiologist feedback loops would allow the model to adapt
to real-world cases, ensuring sustained diagnostic accuracy and practical clinical impact.
Advanced deep learning approaches, particularly variational autoencoders (VAEs), have
shown considerable value, especially those focused on analyzing COVID-19 chest X-rays.
These methods have proven effective in addressing challenges like class imbalance and
enhancing feature learning [65,66]. Future work could involve integrating VAE-based
techniques for data balancing or feature extraction to further improve model robustness.
Additionally, both highlighted sophisticated uses of Grad-CAM for model interpretability,
suggesting that incorporating more advanced or modified Grad-CAM approaches could
enhance explainability and clinical trust in pneumonia classification models.

5. Conclusions and Future Work
This study demonstrates that deep learning models can achieve excellent diagnostic

performance for pediatric pneumonia when properly optimized. The InceptionResNetV2
model, with strided convolutions and Mish activation, achieved the highest accuracy of
0.9718, closely followed by InceptionV3 at 0.9684. The DenseNet201 architecture performed
exceptionally well with multi-scale convolutions, reaching 0.9676 accuracy, while Mo-
bileNetV2 achieved 0.9437 accuracy using the same approach. These results highlight
how different convolutional strategies can be matched to specific network architectures
for optimal performance. The integration of Grad-CAM provided valuable interpretability,
clearly visualizing diagnostic features in chest X-rays. For viral pneumonia, the models
detected diffuse patterns across lung fields, while for bacterial cases, the models identified
the precise localization of consolidations. This capability to explain decisions builds crucial
trust for clinical adoption.

Moving forward, we aim to translate these research findings into clinical practice by
developing an end-to-end AI diagnostic system capable of real-time pneumonia detection.
This will require expanded validation across diverse patient populations and imaging
protocols to ensure robustness. We also plan to optimize these models for practical de-
ployment through the use of edge computing solutions that preserve diagnostic accuracy
while meeting clinical latency requirements. Close collaboration with radiologists will be
essential to refine model predictions and integrate AI assistance seamlessly into existing
workflows. By bridging the gap between technical innovation and clinical needs, this work
paves the way for more accurate, interpretable, and deployable AI tools for use in pediatric
respiratory care.
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